Skip to main content
Log in

Optimal Frame Completions with Prescribed Norms for Majorization

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Given a finite sequence of vectors \(\mathcal F_0\) in a \(d\)-dimensional complex Hilbert space \({{\mathcal {H}}}\) we characterize in a complete and explicit way the optimal completions of \(\mathcal F_0\) obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector—that depends on the eigenvalues of the frame operator of the initial sequence \({\mathcal {F}}_0\) and the sequence of prescribed norms—that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence \({\mathcal {F}}_0\) we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur–Horn theorem for operators and frames with prescribed norms and frame operator. Ill J. Math. 51, 537–560 (2007)

  2. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2–4), 357–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

    Book  Google Scholar 

  4. Bodmann, B.G.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22(3), 274–285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodmann, B.G., Kribs, D.W., Paulsen, V.I.: Decoherence-insensitive quantum communication by optimal \(C^*\)-encoding. IEEE Trans. Inf. Theory 53, 4738–4749 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bodmann, B.G., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35, 52–73 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casazza, P.G.: Custom building finite frames. In: Wavelets, Frames and Operator Theory, pp. 61–86, Contemp. Math., vol. 345. Am. Math. Soc., Providence (2004)

  9. Casazza, P.G., Fickus, M.: Minimizing fusion frame potential. Acta Appl. Math. 107(1–3), 7–24 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Casazza, P.G., Fickus, M., Kovacevic, J., Leon, M.T., Tremain, J.C.: A physical interpretation of tight frames, Harmonic analysis and applications, pp. 51–76. Appl. Numer. Harmon. Anal. Birkhäuser, Boston (2006)

  11. Casazza, P.G., Kovacevic, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Casazza, P.G., Kutyniok, G. (eds).: Finite Frames: Theory and Applications. Birkhauser. xii + 483 pp. (2012)

  13. Casazza, P.G., Leon, M.T.: Existence and construction of finite frames with a given frame operator. Int. J. Pure Appl. Math. 63(2), 149–157 (2010)

    MATH  MathSciNet  Google Scholar 

  14. Dhillon, I.S., Heath Jr, R.W., Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27(1), 61–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dykema, K., Freeman, D., Kornelson, K., Larson, D., Ordower, M., Weber, E.: Ellipsoidal tight frames and projection decomposition of operators. Illinois J. Math. 48, 477–489 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Feng, D.J., Wang, L., Wang, Y.: Generation of finite tight frames by Householder transformations. Adv. Comput. Math. 24, 297–309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fickus, M., Poteet, M.J.: Characterizing completions of finite frames. 10th Proc. Sampl. Theory Appl., pp. 89–92 (2013)

  18. Fickus, M., Mixon, D.G., Poteet, M.J.: Frame completions for optimally robust reconstruction. In: Proceedings of SPIE 8138: 81380Q/1-8 (2011)

  19. Fickus, M., Mixon, D.G., Poteet, M.J.: Constructing finite frames of a given spectrum, Finite frames, pp. 55–107. Appl. Numer. Harmon. Anal. Birkhäuser/Springer, New York (2013)

  20. Fickus, M., Johnson, B.D., Kornelson, K., Okoudjou, K.A.: Convolutional frames and the frame potential. Appl. Comput. Harmon. Anal. 19(1), 77–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Johnson, B.D., Okoudjou, K.A.: Frame potential and finite abelian groups. Radon transforms, geometry, and wavelets, pp. 137–148, Contemp. Math., vol. 464. Amer. Math. Soc., Providence (2008)

  23. Kornelson, K.A., Larson, D.R.: Rank-one decomposition of operators and construction of frames. Wavelets, frames and operator theory, pp. 203–214. Contemp. Math., vol. 345. Amer. Math. Soc., Providence (2004)

  24. Leng, J., Han, D.: Optimal dual frames for erasures II. Linear Algebra Appl. 435, 1464–1472 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lopez, J., Han, D.: Optimal dual frames for erasures. Linear Algebra Appl. 432, 471–482 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Massey, P., Ruiz, M.A.: Tight frame completions with prescribed norms. Sampl. Theory Signal Image Process. 7(1), 1–13 (2008)

    MATH  MathSciNet  Google Scholar 

  27. Massey, P., Ruiz, M.: Minimization of convex functionals over frame operators. Adv. Comput. Math. 32, 131–153 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Massey, P., Ruiz, M., Stojanoff, D.: The structure of minimizers of the frame potential on fusion frames. J. Fourier Anal. Appl. 16(4), 514–543 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Massey, P., Ruiz, M., Stojanoff, D.: Duality in reconstruction systems. Linear Algebra Appl. 436, 447–464 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Massey, P., Ruiz, M., Stojanoff, D.: Optimal dual frames and frame completions for majorization. Appl. Comput. Harmon. Anal. 34(2), 201–223 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Massey, P., Ruiz, M., Stojanoff, D.: Optimal frame completions. Adv. Comput. Math. (2014). doi:10.1007/s10444-013-9339-7

Download references

Acknowledgments

This work was partially supported by CONICET (PIP 0435/10) and Universidad Nacional de La PLata (UNLP 11 X585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro G. Massey.

Additional information

Communicated by Peter G. Casazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massey, P.G., Ruiz, M.A. & Stojanoff, D. Optimal Frame Completions with Prescribed Norms for Majorization. J Fourier Anal Appl 20, 1111–1140 (2014). https://doi.org/10.1007/s00041-014-9347-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9347-0

Keywords

Mathematics Subject Classification

Navigation