Skip to main content
Log in

On a Priori Energy Estimates for Characteristic Boundary Value Problems

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Motivated by the study of certain non linear free-boundary value problems for hyperbolic systems of partial differential equations arising in Magneto-Hydrodynamics, in this paper we show that an a priori estimate of the solution to certain boundary value problems, in the conormal Sobolev space \(H^1_{ tan}\), can be transformed into an \(L^2\) a priori estimate of the same problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. With a slight abuse, the same notations \(C^\infty _{(0)}(\mathbb R^n_+)\), \(C^\infty _0(\mathbb R^n)\) are used throughout the paper to mean the space of functions taking either scalar or matrix values (possibly with different sizes). We adopt the same abuse for other function spaces later on.

  2. In nonlinear free-boundary problems the scalar function \(\psi \) describes the displacement of the discontinuity.

  3. Notice however that, for functions arbitrarily supported on \(\mathbb {R}^n_+\), the conormal derivative \(Z_1\) equals the singular operator \(x_1\partial _1\) only locally near the boundary \(\{x_1=0\}\); indeed, \(Z_1\) behaves like the usual normal derivative \(\partial _1\) far from the boundary, according to the properties of the weight \(\sigma =\sigma (x_1)\).

  4. In principle, \(\mathrm{Op}^{\gamma }_{\sharp }(a)\) could be defined by (38) over all functions \(u\in C^{\infty }(\mathbb {R}^n_+)\), such that \(u^{\sharp }\in \mathcal {S}(\mathbb {R}^n)\). Then \(\mathrm{Op}^{\gamma }_{\sharp }(a)\) defines a linear bounded operator on the latter function space, provided that it is equipped with the topology induced, via \(\sharp \), from the Fréchet topology of \(\mathcal {S}(\mathbb {R}^n)\).

  5. Actually, instead of \((\lambda ^{-1,\gamma }(Z)u, \lambda ^{-1,\gamma }(D')\psi )\) we will consider similar functions obtained by applying to \((u,\psi )\) a suitable modified version of the operators \(\lambda ^{-1,\gamma }(Z)\), \(\lambda ^{-1,\gamma }(D')\), that will be rigorously defined in Sect. 4.2. These new operators will be constructed in such a way to differ from \(\lambda ^{-1,\gamma }(Z)\), \(\lambda ^{-1,\gamma }(D')\) by suitable regularizing lower order reminders.

  6. This can be made by multiplying \(\mathcal {K}(x,y)\) by a suitable cut off function \(\varphi =\varphi (y)\in C^\infty _0(\mathbb {R}^n)\) such that \(\varphi (y)=1\) for \(|y|\le 2\varepsilon _0\). This multiplication does not modify \(\mathcal {K}\), since \(\mathcal {K}\) is supported on \(\{|y|\le \varepsilon _0\}\) with respect to \(y\). Thus the equality (72) still holds, where the functions \(b_k(x,y)\) are replaced by \(b_k(x,y)\varphi (y)\) compactly supported with respect to \(y\).

References

  1. Agranovič, M.S.: Boundary value problems for systems with a parameter. Mat. Sb. (N.S.) 84(126), 27–65 (1971)

    MathSciNet  Google Scholar 

  2. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Part. Differ. Equ. 14(2), 173–230 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations: Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford (2007)

    Google Scholar 

  4. Catania, D.: Existence and stability for the 3D linearized constant-coefficient incompressible current-vortex sheets. Int. J. Differ. Equ. 2013, 1–3 (2013)

    MathSciNet  Google Scholar 

  5. Catania, D., D’Abbicco, M., & Secchi, P.: Well-posedness of the linearized MHD-Maxwell free boundary problem. Preprint (2013)

  6. Chazarain, J., Piriou, A.: Introduction to the theory of linear partial differential equations. In: Studies in Mathematics and its Applications, Vol. 14. North-Holland Publishing Co., Amsterdam (1982). Translated from the French

  7. Chen, S.: Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary. Front. Math. China 2(1), 87–102 (2007). Translated from Chinese Ann. Math. 3 (1982), no. 2, 222–232

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187(3), 369–408 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coulombel, J.F.: Stabilité multidimensionnelle d’interfaces dynamiques. Applications aux transitions de phase liquide-vapeur. PhD thesis, (2002)

  10. Coulombel, J.F.: Well-posedness of hyperbolic initial boundary value problems. J. Math. Pure Appl. 84, 786–818 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Coulombel, J.F., Secchi, P.: The stability of compressible vortex sheets in two space dimensions. Indiana Univ. Math. J. 53(4), 941–1012 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Coulombel, J.F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Ecole Norm. Sup. 41(1), 85–139 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Goedbloed, J.P., Poedts, S.: Principles of Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  14. Hunter, J.K.: Nonlinear surface waves. In current progress in hyperbolic systems: Riemann problems and computations (Brunswick, ME, 1988). Am. Math. Soc. 100, 185–202 (1989)

    Google Scholar 

  15. Kreiss, H.O.: Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media. In: Lifshits, E.M., Pitaevskiĭ, L.P. (eds.) Course of Theoretical Physics, vol. 8, 2nd edn. Pergamon Press, Oxford (1984)

    Google Scholar 

  17. Majda, A.: The existence of multidimensional shock fronts. Mem. Am. Math. Soc. 43(281), v+93 (1983)

    MathSciNet  Google Scholar 

  18. Majda, A.: The stability of multidimensional shock fronts. Mem. Am. Math. Soc. 41(275), iv+95 (1983)

    MathSciNet  Google Scholar 

  19. Métivier, G.: Stability of multidimensional shocks. In: Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl., vol. 47 pp. 25–103. Birkhäuser Boston, Boston, (2001)

  20. Morando, A., Secchi, P.: Regularity of weakly well-posed characteristic boundary value problems. Int. J. Differ. Equ. 2010, 39 (2010). doi:10.1155/2010/524736. Article ID 524736

    MathSciNet  Google Scholar 

  21. Morando, A., Secchi, P.: Regularity of weakly well posed hyperbolic mixed problems with characteristic boundary. J. Hyperbolic Differ. Equ. 8(1), 37–99 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Morando, A., Secchi, P., Trebeschi, P.: Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems. J. Hyperbolic Differ. Equ. 6(4), 753–808 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morando, A., Trakhinin, Y., Trebeschi, P.: Stability of incompressible current-vortex sheets. J. Math. Anal. Appl. 347(2), 502–520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Morando, A., Trakhinin., Y., & Trebeschi, P.: Well-posedness and stability analysis for MHD contact discontinuities. Preprint on arXiv:1311.6373

  25. Morando, A., Trakhinin, Y. & Trebeschi, P.: Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD. Quarterly of Applied Mathematics (2014), to appear

  26. Nishitani, T., Takayama, M.: Regularity of solutions to non-uniformly characteristic boundary value problems for symmetric systems. Commun. Part. Differ. Equ. 25(5–6), 987–1018 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Saint Raymond, X.: Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics. CRC Press, Boca Raton (1991)

    Google Scholar 

  28. Sakamoto, R.: Mixed problems for hyperbolic equations. I. Energy inequalities. J. Math. Kyoto Univ. 10, 349–373 (1970)

    MATH  MathSciNet  Google Scholar 

  29. Sakamoto, R.: Mixed problems for hyperbolic equations. II. Existence theorems with zero initial datas and energy inequalities with initial datas. J. Math. Kyoto Univ. 10, 403–417 (1970)

    MATH  MathSciNet  Google Scholar 

  30. Secchi, P.: Some properties of anisotropic Sobolev spaces. Arch. Math. (Basel) 75(3), 207–216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Secchi, P., Trakhinin, Y.: Well-posedness of the linearized plasma-vacuum interface problem. Interfaces Free Bound. 15, 323–357 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Secchi, P., Trakhinin, Y.: Well-posedness of the plasma-vacuum interface problem. Nonlinearity 27(1), 105–169 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Trakhinin, Y.: Existence of compressible current-vortex sheets: Variable coefficients linear analysis. Arch. Ration. Mech. Anal. 177(3), 331–366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245–310 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Trakhinin, Y.: On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD. J. Differ. Equ. 249, 2577–2599 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yanagisawa, T., Matsumura, A.: The fixed boundary value problems for the equations of ideal magnetohydrodynamics with a perfectly conducting wall condition. Commun. Math. Phys. 136(1), 119–140 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Trebeschi.

Additional information

Communicated by Rodolfo H. Torres.

Appendices

Appendix 1: Proof of Some Technical Lemmata

1.1 Proof of Lemma 10

For a given smooth function \(u\in C^\infty _{(0)}(\mathbb {R}^n_+)\), an explicit calculation gives that

$$\begin{aligned} \lambda ^{m,\gamma }_{\chi }(Z)u(x)\!=\! \left\langle \mathcal {F}^{-1}\lambda ^{m,\gamma }(\cdot ),\chi (\cdot )e^{-\frac{(\cdot )_1}{2}}u(x_1e^{-(\cdot )_1},x'\!-\!(\cdot )') \right\rangle ,\quad \forall \,x\!=\!(x_1,x')\in \mathbb {R}^n_+. \end{aligned}$$

We have to prove that, under a suitable choice of \(\varepsilon _0\), if \(x\notin \mathbb {B}^+\) then \(\lambda ^{m,\gamma }_{\chi }(Z)u(x)=0\). This is true if

$$\begin{aligned} y\mapsto v_x(y):=\chi (y)e^{-\frac{y_1}{2}}u(x_1e^{-y_1},x'-y') \end{aligned}$$

is identically zero as long as \(x\notin \mathbb {B}^+\).

Since \(\mathbb {R}^n_+\setminus \mathbb {B}^+=\{x=(x_1,x'):\,x_1\ge 1,\,\,\forall \,x'\in \mathbb {R}^{n-1}\}\cup \{x=(x_1,x'):\,|x'|\ge 1,\,\,\forall \,x_1\in [0,+\infty [\}\) we need to analyze the following two cases.

1st case: \(x_1\ge 1\).

Let \(y\in \mathbb {R}^n\) be arbitrarily fixed. If \(y\notin \mathrm{supp}\chi \), then \(\chi (y)=0\), which implies \(v_x(y)=0\). If \(y\in \mathrm{supp}\chi \), then we have \(-\varepsilon _0\le y_1\le \varepsilon _0\) and \(|y'|\le \varepsilon _0\). Hence, we derive that \(e^{-\varepsilon _0}\le e^{-y_1}\le e^{\varepsilon _0}\) and, since \(x_1\ge 1\), \(x_1e^{-y_1}\ge e^{-y_1}\ge e^{-\varepsilon _0}\). Since \(u(x_1,x')=0\) when \(x_1\ge \delta _0\), if we choose \(\varepsilon _0>0\) such that \(e^{-\varepsilon _0}>\delta _0\) (that is equivalent to \(\varepsilon _0<\log (1/\delta _0)\)), then we get that

$$\begin{aligned} \forall \,y\in \mathrm{supp}\chi ,\,\,\forall \,x_1\ge 1\,:\quad u(x_1e^{-y_1},x'-y')=0, \end{aligned}$$

which gives \(v_x(y)=0\).

2nd case: \(|x'|\ge 1\).

Again, if \(y\notin \mathrm{supp}\chi \), then \(v_x(y)=0\). If \(y\in \mathrm{supp}\chi \) then \(|x'-y'|\ge |x'|-|y'|\ge 1-|y'|\ge 1-\varepsilon _0\). To conclude, in this case it is sufficient to choose \(\varepsilon _0>0\) such that \(1-\varepsilon _0>\delta _0\) in order to have again \(v_x(y)=0\).

Finally, the result is proved if we choose \(0<\varepsilon _0\le \min \{\log (1/\delta _0),1-\delta _0\}\).

1.2 Proof of Lemma 12

For arbitrary \(u\in L^2(\mathbb {R}^n_+)\), we observe that in view of (35), (38)

$$\begin{aligned} (r_m(Z,\gamma )u)^{\sharp }=r_m(D,\gamma )u^\sharp =\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))*u^\sharp \,; \end{aligned}$$
(128)

then, for arbitrary \(\beta \in \mathbb {N}^n\):

$$\begin{aligned} \partial ^{\beta }(r_m(Z,\gamma )u)^{\sharp }=(\partial ^{\beta }\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))*u^\sharp \,. \end{aligned}$$

Since \(H^{p}_{tan,\gamma }(\mathbb {R}^n_+)\) is topologically isomorphic to \(H^p_{\gamma }(\mathbb {R}^n)\) for all positive integers \(p\), via the \(\sharp \) operator, and \(u^\sharp \in L^2(\mathbb {R}^n)\), then \(r_{m}(Z,\gamma )u\in H^p_{tan,\gamma }(\mathbb {R}^n_+)\) is proven provided that \(\partial ^{\beta }\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))\) belongs to \(L^1(\mathbb {R}^n)\) for all \(\beta \in \mathbb {N}^n\) with \(|\beta |\le p\).

On the other hand, by the standard properties of the Fourier transform and by (46), we get

$$\begin{aligned}&\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))=\mathcal {F}^{-1}((I-\chi (D))\lambda ^{m,\gamma })=\mathcal {F}^{-1}(\mathcal {F}^{-1}((1-\chi )\widehat{\lambda ^{m,\gamma }}))\nonumber \\&\quad =(2\pi )^{-n}\widetilde{((1-\chi )\widehat{\lambda ^{m,\gamma }})}=(1-\chi )\mathcal {F}^{-1}(\lambda ^{m,\gamma }), \end{aligned}$$
(129)

where we have used the identity \(\mathcal {F}^{-1}g= (2\pi )^{-n}\widetilde{\widehat{g}},\) with \(\widetilde{g}(x)=g(-x)\), and that \(\chi \) is an even function.

Let us firstly focus on \(\mathcal {F}^{-1}(\lambda ^{m,\gamma })\). For arbitrary positive integers \(N, k\) and \(\beta \in \mathbb {N}^n\) one computes

$$\begin{aligned}&{|z|^{2(N+k)}\partial ^\beta _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)=i^{|\beta |}\sum \limits _{|\alpha |=N+k}\frac{(N+k)!}{\alpha !}z^{2\alpha }\mathcal {F}^{-1}(\xi ^\beta \lambda ^{m,\gamma })(z)}\nonumber \\&\quad {=i^{|\beta |}(-1)^{N+k}\sum \limits _{|\alpha |=N+k}\frac{(N+k)!}{\alpha !}\mathcal {F}^{-1}\left( \partial ^{2\alpha }_\xi (\xi ^\beta \lambda ^{m,\gamma })\right) (z)\,.} \end{aligned}$$
(130)

On the other hand, since \(\lambda ^{m,\gamma }\in \Gamma ^m\), for \(|\alpha |=N+k\) we get

$$\begin{aligned}&|\partial ^{2\alpha }_\xi (\xi ^\beta \lambda ^{m,\gamma }(\xi ))|\le C_{\alpha ,\beta }\lambda ^{m+|\beta |-2|\alpha |,\gamma }(\xi )= C_{\alpha ,\beta }\lambda ^{m+|\beta |-2(N+k),\gamma }(\xi )\\&\quad =C_{\alpha ,\beta }\lambda ^{-2k,\gamma }(\xi )\lambda ^{m+|\beta |-2N,\gamma }(\xi )\\&\quad \le C_{\alpha ,\beta }\gamma ^{-2k}\lambda ^{m+|\beta |-2N,\gamma }(\xi ) ,\quad \forall \,\xi \in \mathbb {R}^n,\,\,\forall \,\gamma \ge 1\,. \end{aligned}$$

For fixed \(\beta \), we choose the integer \(N_{\beta }=N\) such that \(2N\ge m+|\beta |+1+n\); then

$$\begin{aligned} \lambda ^{m+|\beta |-2N,\gamma }(\xi )\le \lambda ^{-(1+n),\gamma }(\xi )\le (1+|\xi |^2)^{-\frac{n+1}{2}},\quad \forall \,\xi \in \mathbb {R}^n,\,\,\forall \,\gamma \ge 1 \end{aligned}$$

yields

$$\begin{aligned} |\partial ^{2\alpha }_\xi (\xi ^\beta \lambda ^{m,\gamma }(\xi ))|\le C_{\alpha ,\beta }\gamma ^{-2k}(1+|\xi |^2)^{-\frac{n+1}{2}},\quad \forall \,\xi \in \mathbb {R}^n,\,\,\forall \,\gamma \ge 1\,; \end{aligned}$$

hence \(\partial ^{2\alpha }_\xi (\xi ^\beta \lambda ^{m,\gamma }(\xi ))\in L^1(\mathbb {R}^n)\) and, from Riemann–Lebesgue Theorem, \(\mathcal {F}^{-1} (\partial ^{2\alpha }_\xi (\xi ^\beta \lambda ^{m,\gamma }(\xi )))\in L^\infty (\mathbb {R}^n)\cap C^0(\mathbb {R}^n)\) and we have

$$\begin{aligned} \begin{array}{ll} {||\mathcal {F}^{-1}(\partial ^{2\alpha }_\xi (\xi ^\beta \lambda ^{m,\gamma }(\xi )))||_{L^\infty (\mathbb {R}^n)}\le \int \limits _{\mathbb {R}^n}|\partial ^{2\alpha }_\xi (\xi ^\beta \lambda ^{m,\gamma }(\xi ))|\,d\xi }\\ \qquad {\le C_{\alpha ,\beta }\gamma ^{-2k}\int \limits _{\mathbb {R}^n}(1+|\xi |^2)^{-\frac{n+1}{2}}d\xi \le C_{\alpha ,\beta ,n}\gamma ^{-2k},\quad \forall \,\gamma \ge 1\,.} \end{array} \end{aligned}$$

Therefore, in view of (130),

$$\begin{aligned} |z|^{2(N+k)}\partial ^\beta _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)\in L^\infty (\mathbb {R}^n)\cap C^0(\mathbb {R}^n) \end{aligned}$$

and

$$\begin{aligned} |z|^{2(N+k)}|\partial ^\beta _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)|\le C_{k,N,\beta ,n}\gamma ^{-2k},\quad \forall \,z\in \mathbb {R}^n,\gamma \ge 1, \end{aligned}$$

where the constant \(C_{k,N,\beta ,n}\) is independent of \(\gamma \).

Summarizing, we have proved that:

$$\begin{aligned} \begin{array}{ll} {\forall \,\beta \in \mathbb {N}^n,\forall \,k,N\in \mathbb {N},\,\text {with}\,\, k\ge 1,\,\,\,N\ge \frac{m+|\beta |+1+n}{2},\,\,\,\exists \,C=C_{k,N,\beta ,n}>0:}\\ {1.\quad |z|^{2(N+k)}\partial ^\beta _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)\in L^\infty (\mathbb {R}^n)\cap C^0(\mathbb {R}^n)}\\ {2.\quad |z|^{2(N+k)}|\partial ^\beta _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)|\le C_{k,N,\beta ,n}\gamma ^{-2k},\quad \forall \,z\in \mathbb {R}^n,\gamma \ge 1\,.} \end{array} \end{aligned}$$

For arbitrary \(\beta \in \mathbb {N}^n\), we consider \(\partial ^{\beta }\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))\). From (129) we compute, by Leibniz formula,

$$\begin{aligned} \partial ^{\beta }\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))(z)&= -\sum \limits _{\nu <\beta } \left( \begin{array}{ll}\beta \\ \nu \end{array}\right) \partial ^{\beta -\nu }_z\chi (z)\partial ^\nu _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)\nonumber \\&\quad +\, (1-\chi )(z)\partial ^{\beta }_z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)\,. \end{aligned}$$
(131)

Note that \(\partial ^{\beta -\nu }\chi \), for all \(\nu <\beta \), and \(1-\chi \) are identically zero on a neighbourhood of \(z=0\). Then, from 1, 2 above we derive that

$$\begin{aligned} \begin{array}{ll} {\forall \,\beta \in \mathbb {N}^n,\forall \,k,N\in \mathbb {N},\,\text {with}\,\, k\ge 1,\,\,\,N\ge \frac{m+|\beta |+1+n}{2},\,\,\,\exists \,C=C_{k,N,\beta ,\chi ,n}>0:}\\ 3.\quad \partial ^{\beta -\nu }_z\chi (z)\partial ^\nu _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z),\, (1-\chi )(z)\partial ^\beta _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z) \in L^\infty (\mathbb {R}^n)\cap C^0(\mathbb {R}^n),\\ \forall \,\nu <\beta \,;\\ \begin{array}{ll}4.\quad |\partial ^{\beta -\nu }_z\chi (z)\partial ^\nu _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)|\le C_{k,N,\beta ,\chi ,n}\gamma ^{-2k}(1+|z|^2)^{-N},\\ \quad \quad |(1-\chi )(z)\partial ^\beta _z\mathcal {F}^{-1}(\lambda ^{m,\gamma })(z)|\le C_{k,N,\beta ,\chi ,n}\gamma ^{-2k}(1+|z|^2)^{-N},\,\,\forall \,z\in \mathbb {R}^n,\\ \nu <\beta ,\,\,\gamma \ge 1\,.\end{array} \end{array} \end{aligned}$$

Thus, applying 4 for \(N\ge \max \left\{ {\frac{n+1}{2}},{\frac{m+|\beta |+n+1}{2}}\right\} \), from (131) we obtain that \(\partial ^{\beta }\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))\in L^1(\mathbb {R}^n)\) and for all \(\gamma \ge 1\):

$$\begin{aligned} ||\partial ^{\beta }\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))||_{L^1(\mathbb {R}^n)}&\le C_{N,k,n,\beta ,\chi }\gamma ^{-2k}\int \limits _{\mathbb {R}^n}(1+|z|^2)^{-N}dz\le C_{k,n,\beta ,\chi }\gamma ^{-2k}\nonumber \\&\le C_{k,n,\beta ,\chi }\gamma ^{-k} , \end{aligned}$$
(132)

where the constant \(C_{k,n,\beta ,\chi }\) is independent of \(\gamma \).

For every positive integer \(p\), applying the above result to all multi-indices \(\beta \in \mathbb {N}^n\) with \(|\beta |\le p\) gives that \(\partial ^\beta (r_{m}(Z,\gamma )u)^\sharp =\partial ^\beta \mathcal {F}^{-1}(r_m(\cdot ,\gamma ))*u^\sharp \) belongs to \(L^2(\mathbb {R}^n)\) with

$$\begin{aligned} ||\partial ^\beta (r_{m}(Z,\gamma )u)^\sharp ||_{L^2(\mathbb {R}^n)}&\le ||\partial ^{\beta }\mathcal {F}^{-1}(r_m(\cdot ,\gamma ))||_{L^1(\mathbb {R}^n)}||u^{\sharp }||_{L^2(\mathbb {R}^n)}\nonumber \\&\le C_{k,n,\beta ,\chi }\gamma ^{-k}||u||_{L^2(\mathbb {R}^n_+)}\,. \end{aligned}$$
(133)

This gives that \(r_m(Z,\gamma )u\in H^p_{tan,\gamma }(\mathbb {R}^n_+)\). Furthermore, for an arbitrary positive integer \(h\) we apply (133) for each \(\beta \in \mathbb {N}^n\) with \(|\beta |\le p\) for \(k=p-|\beta |+h\) to get

$$\begin{aligned}&||r_m(Z,\gamma )u||^2_{H^p_{tan,\gamma }(\mathbb {R}^n_+)}\le C_p||(r_m(Z,\gamma )u)^\sharp ||^2_{H^p_\gamma (\mathbb {R}^n)}\nonumber \\&\quad =\sum \limits _{|\beta |\le p}\gamma ^{2(p-|\beta |)}||\partial ^\beta (r_{m}(Z,\gamma )u)^\sharp ||^2_{L^2(\mathbb {R}^n)}\nonumber \\&\quad \le \sum \limits _{|\beta |\le p}\gamma ^{2(p-|\beta |)} C_{h,p,n,\beta ,\chi }\gamma ^{-2(p-|\beta |+h)}||u||^2_{L^2(\mathbb {R}^n_+)}\nonumber \\&\quad \le C_{h,p,n,\chi }\gamma ^{-2h}||u||^2_{L^2(\mathbb {R}^n_+)}, \end{aligned}$$
(134)

for a suitable \(\gamma \)-independent positive constant \(C_{h,p,n,\chi }\). This shows the estimate (49) and completes the proof.

1.3 Proof of Proposition 13

Let \(u\in C^{\infty }_{(0)}(\mathbb {R}^n_+)\); to find a symbol \(b'_{m}\) satisfying (53), from (46) we firstly compute

$$\begin{aligned}&(\lambda ^{m,\gamma }_{\chi }(Z)u)^{\sharp }(x)=\lambda ^{m,\gamma }_{\chi }(D)(u^{\sharp })(x)=(\mathcal {F}^{-1}(\lambda ^{m,\gamma }_{\chi })*u^{\sharp })(x)\\&\quad =\langle \mathcal {F}^{-1}(\lambda ^{m,\gamma }_{\chi }),u^{\sharp }(x-\cdot )\rangle \\&\quad {=\langle \mathcal {F}^{-1}(\lambda ^{m,\gamma }),\chi (\cdot )e^\frac{{x_1-(\cdot )_1}}{2}u(e^{x_1-(\cdot )_1},x'-(\cdot )')\rangle ,\quad \forall \,(x_1,x')\in \mathbb {R}^n,} \end{aligned}$$

hence, by (31),

$$\begin{aligned} \begin{array}{ll} {\lambda ^{m,\gamma }_{\chi }(Z)u(x)=\langle \mathcal {F}^{-1}(\lambda ^{m,\gamma }),\chi (\cdot )e^\frac{{x_1-(\cdot )_1}}{2}u(e^{x_1-(\cdot )_1},x'-(\cdot )')\rangle ^{\sharp ^{-1}}}\\ \\ {=\frac{1}{\sqrt{x_1}}\left\langle \mathcal {F}^{-1}(\lambda ^{m,\gamma }),\chi (\cdot )e^\frac{{\log x_1-(\cdot )_1}}{2}u(e^{\log x_1-(\cdot )_1},x'-(\cdot )')\right\rangle }\\ \\ \quad {=\left\langle \mathcal {F}^{-1}(\lambda ^{m,\gamma }),\chi (\cdot )e^{\frac{-(\cdot )_1}{2}}u(x_1e^{-(\cdot )_1},x'-(\cdot )')\right\rangle }\\ \\ \quad {=\left\langle \lambda ^{m,\gamma },\mathcal {F}^{-1}\left( \chi (\cdot )e^{\frac{-(\cdot )_1}{2}}u(x_1e^{-(\cdot )_1},x'-(\cdot )')\right) \right\rangle }\\ \\ \quad =(2\pi )^{-n}\int \lambda ^{m,\gamma }(\xi )\left( \int e^{i\xi \cdot y}\chi (y)e^{-\frac{y_1}{2}}u(x_1e^{-y_1},x'-y')dy\right) d\xi ,\quad \forall \,x_1>0,\,\,\\ \qquad \forall \,x'\in \mathbb {R}^{n-1}\,. \end{array} \end{aligned}$$

The regularity of \(u\) legitimates all the above calculations. Setting \(x_1=0\) in the last expression above, we deduce the corresponding expression for the trace on the boundary of \(\lambda ^{m,\gamma }_{\chi }(Z)u\)

$$\begin{aligned}&(\lambda ^{m,\gamma }_{\chi }(Z)u)_{|\,x_1=0}(x')\nonumber \\&\quad =(2\pi )^{-n}\int \lambda ^{m,\gamma }(\xi )\left( \int e^{i\xi \cdot y}\chi (y)e^{-\frac{y_1}{2}}(u_{|\,x_1=0})(x'-y')dy\right) d\xi \,.\qquad \end{aligned}$$
(135)

Now we substitute (51) into the \(y\)-integral appearing in the last expression above; then Fubini’s theorem gives

$$\begin{aligned}&\int e^{i\xi \cdot y}\chi _1(y_1)\widetilde{\chi }(y')e^{-\frac{y_1}{2}}(u_{|\,x_1=0})(x'-y')dy\nonumber \\&\quad {=\int e^{i\xi '\cdot y'}\left( \int e^{i\xi _1y_1}e^{-\frac{y_1}{2}}\chi _1(y_1)dy_1\right) \widetilde{\chi }(y')(u_{|\,x_1=0})(x'-y')dy'}\nonumber \\&\quad {=\int e^{i\xi '\cdot y'}\left( \int e^{-i\xi _1(-y_1)}e^{-\frac{y_1}{2}}\chi _1(y_1)dy_1\right) \widetilde{\chi }(y')(u_{|\,x_1=0})(x'-y')dy'}\nonumber \\&\quad {=\int e^{i\xi '\cdot y'}\left( \int e^{-i\xi _1(-y_1)}e^{-\frac{y_1}{2}}\chi _1(-y_1)dy_1\right) \widetilde{\chi }(y')(u_{|\,x_1=0})(x'-y')dy'}\nonumber \\&\quad {=\left( e^{\frac{(\cdot )_1}{2}}\chi _1\right) ^{\wedge _1}(\xi _1)\int e^{i\xi '\cdot y'}\widetilde{\chi }(y')(u_{|\,x_1=0})(x'-y')dy',} \end{aligned}$$
(136)

where we have used that \(\chi _1\) is even and \(\wedge _1\) denotes the one-dimensional Fourier transformation with respect to \(y_1\). Writing, by the inversion formula, \((u_{|\,x_1=0})(x'-y')=(2\pi )^{-n+1}\int e^{i(x'-y')\cdot \eta '}\widehat{u_{|\,x_1=0}}(\eta ')d\eta '\) and using once more Fubini’s theorem and that \(\widetilde{\chi }\) is even, we further obtain

$$\begin{aligned}&\int e^{i\xi '\cdot y'}\widetilde{\chi }(y')(u_{|\,x_1=0})(x'-y')dy'\nonumber \\&\quad =(2\pi )^{-n+1}\int e^{i\xi '\cdot y'}\widetilde{\chi }(y')\left( \int e^{i(x'-y')\cdot \eta '}\widehat{u_{|\,x_1=0}}(\eta ')d\eta '\right) dy'\nonumber \\&\quad {=\int e^{ix'\cdot \eta '}\left( (2\pi )^{-n+1}\int e^{i(\xi '-\eta ')\cdot y'}\widetilde{\chi }(y')dy'\right) \widehat{u_{|\,x_1=0}}(\eta ')d\eta '}\nonumber \\&\quad {=\int e^{ix'\cdot \eta '}\left( (2\pi )^{-n+1}\int e^{-i(\xi '-\eta ')\cdot (-y')}\widetilde{\chi }(-y')dy'\right) \widehat{u_{|\,x_1=0}}(\eta ')d\eta '}\nonumber \\&\quad {=(2\pi )^{-n+1}\int e^{ix'\cdot \eta '}\widehat{\widetilde{\chi }}(\xi '-\eta ')\widehat{u_{|\,x_1=0}}(\eta ')d\eta '\,;} \end{aligned}$$
(137)

here \(\wedge \) is used here to denote the \((n-1)\)-dimensional Fourier transformation with respect to \(x'\). Inserting (136), (137) into (135) then leads to

$$\begin{aligned}&{(\lambda ^{m,\gamma }_{\chi }(Z)u)_{|\,x_1=0}(x')}\nonumber \\&\quad =(2\pi )^{-n}\int \lambda ^{m,\gamma }(\xi )\left( e^{\frac{(\cdot )_1}{2}}\chi _1\right) ^{\wedge _1}(\xi _1){\left( (2\pi )^{-n+1}\int e^{ix'\cdot \eta '}\widehat{\widetilde{\chi }}(\xi '-\eta ')\widehat{u_{|\,x_1=0}}(\eta ')d\eta '\right) d\xi \,.}\nonumber \\ \end{aligned}$$
(138)

Because \(\left( e^{\frac{(\cdot )_1}{2}}\chi _1\right) ^{\wedge _1}\in \mathcal {S}(\mathbb {R})\), \(\widehat{\widetilde{\chi }}\in \mathcal {S}(\mathbb {R}^{n-1})\) and \(\widehat{u_{|\,x_1=0}}\in \mathcal {S}(\mathbb {R}^{n-1})\), the double integral

$$\begin{aligned} \int \int e^{ix'\cdot \eta '} \lambda ^{m,\gamma }(\xi )\left( e^{\frac{(\cdot )_1}{2}}\chi _1\right) ^{\wedge _1}(\xi _1)\widehat{\widetilde{\chi }}(\xi '-\eta ')\widehat{u_{|\,x_1=0}}(\eta ')d\eta 'd\xi \end{aligned}$$

converges absolutely; hence Fubini’s theorem allows to exchange the order of the integrations in (138) and find

$$\begin{aligned} (\lambda ^{m,\gamma }_{\chi }(Z)u)_{|\,x_1=0}(x')=(2\pi )^{-n+1}\int e^{ix'\cdot \eta '} b'_{m}(\eta ',\gamma )\widehat{u_{|\,x_1=0}}(\eta ')d\eta ', \end{aligned}$$
(139)

where \(b'_{m}(\eta ',\gamma )\) is defined by (52). This shows the identity (53).

1.4 Proof of Lemma 14

We follow the same lines of the proof of [20, Lemma 4.11]. Setting for short

$$\begin{aligned} \phi (x):=e^{x_1/2}\chi _1(x_1)\widetilde{\chi }(x'), \end{aligned}$$
(140)

the symbol (52) can be re-written as

$$\begin{aligned} b'_{m}(\xi ',\gamma )=(2\pi )^{-n}\int \lambda ^{m,\gamma }(\eta _1,\eta '+\xi ')\widehat{\phi }(\eta )\,d\eta \,. \end{aligned}$$
(141)

Substituting in (141) the function \(\eta \mapsto \lambda ^{m,\gamma }(\eta _1,\eta '+\xi ')\) by its Taylor expansion about \(\eta =0\)

$$\begin{aligned}&\lambda ^{m,\gamma }(\eta _1,\eta '+\xi ')=\sum \limits _{|\alpha |<N}\frac{(\partial ^{\alpha }\lambda ^{m,\gamma })(0,\xi ')}{\alpha !}\eta ^\alpha \nonumber \\&\quad +\, N\sum \limits _{|\alpha |=N}\frac{\eta ^\alpha }{\alpha !} \int \limits _0^1(\partial ^\alpha \lambda ^{m,\gamma })(t\eta _1,\xi '+t\eta ')(1-t)^{N-1}dt \end{aligned}$$
(142)

for \(N=2\), we get

$$\begin{aligned}&{b'_{m}(\xi ',\gamma )} =(2\pi )^{-n}\int \left[ \lambda ^{m,\gamma }(\xi ')+\sum \limits _{j=1}^n\eta _j(\partial _j\lambda ^{m,\gamma })(0,\xi ')\right. \nonumber \\&\quad \qquad \qquad \qquad \left. +\, 2\sum \limits _{|\alpha |=2}\frac{\eta ^\alpha }{\alpha !} \int \limits _0^1(\partial ^\alpha \lambda ^{m,\gamma })(t\eta _1,\xi '+t\eta ')(1-t)dt\right] \widehat{\phi }(\eta )\,d\eta \nonumber \\&\quad {=(2\pi )^{-n}\lambda ^{m,\gamma }(\xi ')\int \widehat{\phi }(\eta )\,d\eta -i(2\pi )^{-n}\sum \limits _{j=1}^n(\partial _j\lambda ^{m,\gamma })(0,\xi ')\int \widehat{\partial _j\phi }(\eta )d\eta }\nonumber \\&\quad \qquad {-\,2(2\pi )^{-n}\sum \limits _{|\alpha |=2}\frac{1}{\alpha !}\int \left( \int \limits _0^1\partial ^{\alpha }\lambda ^{m,\gamma }(t\eta _1,t\eta '+\xi ')(1-t)\,dt\right) \widehat{\partial ^{\alpha }\phi }(\eta )\,d\eta \,.}\nonumber \\ \end{aligned}$$
(143)

From Plancherel’s identity and (140) (cf. also (45), (51)) we compute

$$\begin{aligned} \begin{array}{ll} {(2\pi )^{-n}\int \widehat{\phi }(\eta )\,d\eta =\phi (0)=1,}\\ {(2\pi )^{-n}\int \widehat{\partial _1\phi }(\eta )\,d\eta =\partial _1\phi (0)=-\frac{1}{2},}\\ {(2\pi )^{-n}\int \widehat{\partial _j\phi }(\eta )\,d\eta =\partial _j\phi (0)=0,\quad j\ge 2\,.} \end{array} \end{aligned}$$
(144)

On the other hand, from (14) one trivially computes that \((\partial _1\lambda ^{m,\gamma })(0,\xi ')=0\) for all \(\xi '\in \mathbb {R}^{n-1}\). Inserting the last relation and (144) into (143) then gives (54), where we set

$$\begin{aligned} \beta _{m,\delta }(\xi ',\gamma )&:= -2(2\pi )^{-n}\sum \limits _{|\alpha |=2}\frac{1}{\alpha !}\int \left( \int \limits _0^1\partial ^\alpha \lambda ^{m,\gamma }(t\eta _1,t\eta '+\xi ')(1-t)\,dt\right) \nonumber \\&\times \, \widehat{\partial ^\alpha \phi }(\eta )\,d\eta \,. \end{aligned}$$
(145)

To prove that \(\beta _m\) belongs to \(\Gamma ^{m-2}\), differentiation under the integral sign of (145) gives, for an arbitrary \(\nu '\in \mathbb {N}^{n-1}\),

$$\begin{aligned}&\partial ^{\nu '}_{\xi '}\beta _{m,\delta }(\xi ',\gamma )\nonumber \\&\quad =-2(2\pi )^{-n}\sum \limits _{|\alpha |=2}^n\frac{1}{\alpha !}\int \left[ \partial ^{\nu '}_{\xi '} \left( \int \limits _0^1(\partial ^\alpha \lambda ^{m,\gamma })(t\eta _1,t\eta '+\xi ')(1-t)\,dt\right) \right] \times \,\widehat{\partial ^\alpha \phi }(\eta ) d\eta \nonumber \\&\quad =-2(2\pi )^{-n} {\sum \limits _{|\alpha |=2}^n\frac{1}{\alpha !}\int \left[ \!\int \limits _0^1(\partial ^{\alpha +(0,\nu ')}\lambda ^{m,\gamma })(t\eta _1,t\eta '\!+\!\xi ')(1-t)\,dt\right] \widehat{\partial ^\alpha \phi }(\eta )\,d\eta \,;}\quad \nonumber \\ \end{aligned}$$
(146)

hence from \(\lambda ^{m,\gamma }\in \Gamma ^m\) we obtain

$$\begin{aligned} |\partial ^{\nu '}_{\xi '}\beta _{m,\delta }(\xi ',\gamma )| \le C_{m,\nu '}\sum \limits _{|\alpha |=2}\int \left( \int \limits _0^1\lambda ^{m-2-|\nu '|,\gamma }(t\eta _1,t\eta '+\xi ')\,dt\right) |\widehat{\partial ^\alpha \phi }(\eta )|\,d\eta ,\nonumber \\ \end{aligned}$$
(147)

for a suitable \(\gamma -\)independent positive constant \(C_{m,\nu '}\).

Recall that, for all \(s\in \mathbb {R}\), \(\gamma \ge 1\) and \(\xi ,\eta \in \mathbb {R}^n\)

$$\begin{aligned} \lambda ^{s,\gamma }(\xi )\le 2^{|s|}\lambda ^{s,\gamma }(\xi -\eta )\lambda ^{|s|}(\eta ), \end{aligned}$$
(148)

see [6], [27, Lemma 1.18]. Then, we apply (148) (for \(s=m-2-|\nu '|\)) to estimate \(\lambda ^{m-2-|\nu '|,\gamma }(t\eta _1,t\eta '+\xi ')\) within the right-hand side of (147) by

$$\begin{aligned} \begin{array}{ll} {\lambda ^{m-2-|\nu '|,\gamma }(t\eta _1,t\eta '+\xi ')\le 2^{|m-2-|\nu '||}\lambda ^{m-2-|\nu '|,\gamma }(\xi ')\lambda ^{|m-2-|\nu '||}(t \eta )}\\ \qquad \qquad \qquad \qquad \le 2^{|m-2-|\nu '||}\lambda ^{m-2-|\nu '|,\gamma }(\xi ')\lambda ^{|m-2-|\nu '||}(\eta ),\\ \quad \forall \,\xi '\in \mathbb {R}^{n-1},\,\eta \in \mathbb {R}^n,t\in [0,1], \end{array} \end{aligned}$$

and combine with (147) to finally get

$$\begin{aligned} |\partial ^{\nu '}_{\xi '}\beta _{m}(\xi ',\gamma )|&\le C'_{m,\nu '}\lambda ^{m-2-|\nu '|,\gamma }(\xi ')\sum \limits _{|\alpha |=2}\int \lambda ^{|m-2-|\nu '||}(\eta )|\widehat{\partial ^\alpha \phi }(\eta )|d\eta \nonumber \\&\le C''_{m,\nu '}\lambda ^{m-2-|\nu '|,\gamma }(\xi '), \end{aligned}$$
(149)

for \(C'_{m,\nu '}, C''_{m,\nu '}\) suitable positive constants independent of \(\gamma \) (notice in particular that the integrals in the sum involved in the right-hand side of the first inequality in (149) are absolutely convergent, because \(\widehat{\partial ^{\alpha }{\phi }}\in \mathcal {S}(\mathbb {R}^n)\) for all \(|\alpha |=2\)).

1.5 Proof of Corollary 15

For all \(\psi \in C^\infty _0(\mathbb {R}^{n-1})\) under the above assumptions, let \(\Psi \in C^\infty _{(0)}(\mathbb {R}^n_+)\) be chosen in such a way that

$$\begin{aligned} \mathrm{supp}\,\Psi \subseteq \mathbb {B}^+_{\delta _0},\quad \Psi _{|\,x_1=0}=\psi \,. \end{aligned}$$
(150)

Such a function \(\Psi \) could be for instance obtained as

$$\begin{aligned} \Psi (x_1,x'):=\eta (x_1)\psi (x'),\quad \forall \,x_1\ge 0,\,\,x'\in \mathbb {R}^{n-1}, \end{aligned}$$

with \(\eta =\eta (x_1)\in C^\infty _{(0)}([0,+\infty [)\) such that

$$\begin{aligned} \eta (x_1)=1,\quad 0\le x_1<\frac{\delta _0}{2},\quad \eta (x_1)=0,\quad x_1>\delta _0\,. \end{aligned}$$

Then, in view of Proposition 13 one has

$$\begin{aligned} b'_{m}(D',\gamma )\psi =b'_{m}(D',\gamma )(\Psi _{|\,x_1=0})=(\lambda ^{m,\gamma }_{\chi }(Z)\Psi )_{|\,x_1=0}\,. \end{aligned}$$

Then, from (150) and Lemma 10,

$$\begin{aligned} \mathrm{supp}\,b'_{m}(D',\gamma )\psi \subset \mathbb {B}^+\cap \{x_1=0\}=\mathcal {B}(0;1)\,. \end{aligned}$$

1.6 Proof of Lemma 17

Recall that we have defined for each \(k=1,\dots ,n\)

$$\begin{aligned} q_{k,m}(x,\xi ,\gamma ):=(2\pi )^{-n}\int \limits _{\mathbb {R}^n}\widehat{b}_k(x,\eta )\partial _k\lambda ^{m,\gamma }(\xi -\eta )\,d\eta , \end{aligned}$$
(151)

where the functions \(b_k=b_k(x,y)\) (cf. (72)) are given in \(C^{\infty }(\mathbb {R}^n\times \mathbb {R}^n)\), have bounded derivatives in \(\mathbb {R}^n\times \mathbb {R}^n\), and satisfy for all \(x\in \mathbb {R}^n\)

$$\begin{aligned} \mathrm{supp}\,b_k(x,\cdot )\subseteq \{|y|\le 2\varepsilon _0\}\,. \end{aligned}$$

Recall also that \(\widehat{b}_k(x,\zeta )\) denotes the partial Fourier transform of \(b_k(x,y)\) with respect to \(y\).

The following lemma is concerned with the behavior at infinity of \(\widehat{b}_k(x,\zeta )\).

Lemma 19

Let the function \(b_k=b_k(x,y)\in C^{\infty }(\mathbb {R}^n\times \mathbb {R}^n)\) obey all of the preceding assumptions. Then, for every positive integer \(N\) and all multi-indices \(\alpha \in \mathbb {N}^n\) there exists a positive constant \(C_{N,\alpha }\) such that

$$\begin{aligned} (1+|\zeta |^2)^N|\partial ^{\alpha }_x\widehat{b}_k(x,\zeta )|\le C_{N,\alpha },\quad \forall \,x,\,\zeta \in \mathbb {R}^n\,. \end{aligned}$$
(152)

Proof

Since for each \(x\in \mathbb {R}^n\), the function \(b_k(x,\cdot )\) has compact support (independent of \(x\)), integrating by parts we get for an arbitrary integer \(N>0\)

$$\begin{aligned}&{(1+|\zeta |^2)^N\widehat{b}_k(x,\zeta )=\sum \limits _{|\alpha |\le N}\frac{N!}{\alpha !(N-|\alpha |)!}\int \limits _{\{|y|\le 2\varepsilon _0\}} \zeta ^{2\alpha } e^{-i\zeta \cdot y}b_k(x,y)\,dy}\nonumber \\&\quad {=\sum \limits _{|\alpha |\le N}\frac{N!}{\alpha !(N-|\alpha |)!}(-1)^{|\alpha |}\int \limits _{\{|y|\le 2\varepsilon _0\}} \partial ^{2\alpha }_{y}(e^{-i\zeta \cdot y})b_k(x,y)\,dy}\nonumber \\&\quad {=\sum \limits _{|\alpha |\le N}\frac{N!}{\alpha !(N-|\alpha |)!}(-1)^{|\alpha |}\int \limits _{\{|y|\le 2\varepsilon _0\}} e^{-i\zeta \cdot y}\partial ^{2\alpha }_y b_k(x,y)\,dy,} \end{aligned}$$
(153)

from which (152) trivially follows, using that \(y-\)derivatives of \(b_k(x,y)\) are bounded in \(\mathbb {R}^n\times \mathbb {R}^n\) by a positive constant independent of \(x\). \(\square \)

We are going now to analyze the behavior at infinity of the derivatives of \(q_{k,m}(x,\xi ,\gamma )\) defined as in (151). For all multi-indices \(\alpha ,\beta \in \mathbb {N}^n\), differentiation under the integral sign in (151) gives

$$\begin{aligned} \begin{array}{ll} \partial ^{\alpha }_{\xi }\partial ^{\beta }_xq_{k,m}(x,\xi ,\gamma )=(2\pi )^{-n}\int \partial ^{\beta }_x\widehat{b}_k(x,\eta )\partial ^{\alpha +e^k}\lambda ^{m,\gamma }(\xi -\eta )\,d\eta , \end{array} \end{aligned}$$
(154)

where \(e^k:=(0,\dots ,\underbrace{1}_{k},\dots ,0)\). Then using that \(\lambda ^{m,\gamma }\) is a symbol of order \(m\) together with (152) and combining with (148), for \(s=m-1-|\alpha |\), we obtain

$$\begin{aligned}&{|\partial ^{\alpha }_{\xi }\partial ^{\beta }_x q_{k,m}(x,\xi ,\gamma )|\le C_{N,\beta }C_{m,\alpha }\int \lambda ^{-2N}(\eta )\lambda ^{m-1-|\alpha |,\gamma }(\xi -\eta )\,d\eta }\nonumber \\&\quad {\le C_{N,m,\alpha ,\beta }\lambda ^{m-1-|\alpha |,\gamma }(\xi )\int \lambda ^{|m-1-|\alpha ||-2N}(\eta )\,d\eta ,} \end{aligned}$$
(155)

where the integral in the last line is finite, provided that the integer \(N\) is taken to be sufficiently large. This provides the estimate (80), with constant \(C_{N,m,\alpha ,\beta }\int \lambda ^{|m-1-|\alpha ||-2N}(\eta )\,d\eta \) independent of \(\gamma \).

Appendix 2: Some Examples from MHD

1.1 Current-Vortex Sheets

Consider the equations of ideal compressible MHD:

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t\rho +\mathrm{div}\, (\rho {v} )=0,\\ \partial _t(\rho {v} ) +\mathrm{div}\,(\rho {v}\otimes {v} -{H}\otimes {H} ) + {\nabla }q=0, \\ \partial _t{H} -{\nabla }\times ({v} {\times }{H})=0,\\ \partial _t\bigl ( \rho e +\frac{1}{2}|{H}|^2\bigr )+ \mathrm{div}\, \bigl ((\rho e +p){v} +{H}{\times }({v}{\times }{H})\bigr )=0, \end{array}\right. \end{aligned}$$
(156)

where \(\rho \) denotes density, \(v\in \mathbb {R}^3\) plasma velocity, \(H \in \mathbb {R}^3\) magnetic field, \(p=p(\rho ,S )\) pressure, \(q =p+\frac{1}{2}|{H} |^2\) total pressure, \(S\) entropy, \(e=E+\frac{1}{2}|{v}|^2\) total energy, and \(E=E(\rho ,S )\) internal energy. With a state equation of gas, \(\rho =\rho (p ,S)\), and the first principle of thermodynamics, (156) is a closed system. The system is symmetric hyperbolic provided \(\rho >0, \frac{\partial \rho }{\partial {p}} >0. \) System (156) is supplemented by the divergence constraint

$$\begin{aligned} \mathrm{div}\, {H} =0 \end{aligned}$$
(157)

on the initial data.

Current-vortex sheets are weak solutions of (156) that are smooth on either side of a smooth hypersurface \(\Gamma (t)=\{x_1=\psi (t,x')\}\) in \([0,T]\times \Omega \), where \(\Omega \subset {\mathbb R}^3,\, x'=(x_2,x_3)\) and that satisfy suitable jump conditions at each point of the front \(\Gamma (t)\).

Let us denote \(\Omega ^\pm (t)=\{x_1\gtrless \psi (t,x')\}\), where \(\Omega =\Omega ^+(t)\cup \Omega ^-(t)\cup \Gamma (t)\); given any function \(g\) we denote \(g^\pm =g\) in \(\Omega ^\pm (t)\) and \([g]=g^+_{|\Gamma }-g^-_{|\Gamma }\) the jump across \(\Gamma (t)\).

One looks for smooth solutions \((v^\pm ,H^\pm ,p^\pm ,S^\pm )\) of (156) in \(\Omega ^\pm (t)\) such that \(\Gamma (t)\) is a tangential discontinuity, namely the plasma does not flow through the discontinuity front and the magnetic field is tangent to \(\Gamma (t)\), see e.g. [16], so that the boundary conditions take the form

$$\begin{aligned} \partial _{t}\psi =v^\pm \cdot N \, ,\quad H^\pm \cdot N=0 \, ,\quad [q]=0 \quad \mathrm{on }\;\Gamma (t) \, , \end{aligned}$$
(158)

with \(N:=(1,-\partial _{x_2}\psi ,-\partial _{x_3}\psi )\). Because of the possible jump in the tangential velocity and magnetic fields, there is a concentration of vorticity and current along the discontinuity \(\Gamma (t)\). Notice that the function \(\psi \) describing the discontinuity front is part of the unknown of the problem, i.e. this is a free-boundary problem. The well-posedness of the nonlinear problem (156)–(158) is shown in [8, 34] under the assumption of the structural stability condition \(|H^+\times H^-|>0\) on \(\Gamma (t)\).

After a change of independent variables that “flattens”the boundary, a linearization around a suitable basic state and some reductions, Trakhinin [33, 34] (see also [8]) gets a linearized problem for \(u=(v^\pm ,H^\pm ,p^\pm ,S^\pm )\) of the form (1) with \(\mathcal {L}_\gamma \) as in (2), \(b_\gamma \) as in (3a), \(\mathcal {M}_\gamma \) as in (3b) but with \(M_2=M_3=0\), that is the boundary operator has order zero in \(u\). Moreover, because of the special reductions, the boundary data are zero, i.e. \(g=0\) in (1b), and \(F\) in (1a) is such that the solution satisfies some additional constraints.

It is proved that the solution of the linearized problem satisfies an a priori estimate similar to (11) (with \(g=0\)). Instead, the linearized problem with general data \(F\) and \(g\not =0\) admits an a priori estimate with a loss of two derivatives, see [34] for details.

Analogous results for incompressible current-vortex sheets are obtained in [4] and [23].

1.2 Plasma-Vacuum 1

Using the previous notations, let \(\Omega ^+(t)\) and \(\Omega ^-(t)\) be space-time domains occupied by the plasma and the vacuum respectively. That is, in the domain \(\Omega ^+(t)\) we consider system (156), (157) governing the motion of an ideal plasma and in the domain \(\Omega ^-(t)\) we consider the so-called pre-Maxwell dynamics

$$\begin{aligned} \nabla \times \mathcal {H} =0,\qquad \mathrm{div}\, \mathcal {H}=0, \end{aligned}$$
(159)

describing the vacuum magnetic field \(\mathcal {H}\in \mathbb {R}^3\), see [13].

The plasma variable \((v,H,p,S)\) is connected with the vacuum magnetic field \(\mathcal {H}\) through the relations [13]

$$\begin{aligned} \partial _{t}\psi =v \cdot N,\quad \!H\cdot N=0, \!\quad \mathcal {H}\cdot N=0 ,\!\quad [q]=0,\quad \text{ on }\ \Gamma (t), \end{aligned}$$
(160)

where the jump of the total pressure across the interface is \([q]= q|_{\Gamma }-\frac{1}{2}|\mathcal {H}|^2_{|\Gamma }\). The well-posedness of the nonlinear problem (156), (157), (159), (160) is shown in [31, 32] under the assumption of the structural stability condition \(|H \times \mathcal {H}|>0\) on \(\Gamma (t)\).

As in the case of current-vortex sheets, after a change of independent variables that “flattens”the boundary, a linearization around a suitable basic state and some reductions, the authors obtain a linearized problem for \(u=(v,H,p,S,\mathcal {H})\) of the form (1) with \(\mathcal {L}_\gamma \) as in (2), \(b_\gamma \) as in (3a), \(\mathcal {M}_\gamma \) as in (3b) with \(M_2=M_3=0\), that is the boundary operator has order zero in \(u\). Moreover, because of the special reductions, the boundary data are zero, i.e. \(g=0\) in (1b), and \(F\) in (1a) is such that the solution satisfies some additional constraints.

In [31] it is proved that the solution of the linearized problem satisfies an a priori estimate similar to (11) (with \(g=0\)). The vacuum magnetic field \(\mathcal {H}\) is estimated in the standard Sobolev space \(H^1\) with full regularity. Instead, the linearized problem with general data \(F\) and \(g\not =0\) admits an a priori estimate similar to (10), with loss of one derivative in \(F\) and \(g\), see [32].

For similar results in the case of the incompressible plasma - vacuum problem, see [25].

1.3 Plasma-Vacuum 2

In the domain \(\Omega ^+(t)\) we consider system (156), (157) governing the motion of an ideal plasma and in the domain \(\Omega ^-(t)\) we consider the Maxwell equations

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _{t}\mathcal {H} + \nabla \times \mathcal {E} = 0 , \\ \partial _{t}\mathcal {E} - \nabla \times \mathcal {H} = 0 , \\ \mathrm{div}\, \mathcal {H} \,= \, \mathrm{div}\, \mathcal {E} = 0 , \end{array}\right. } \end{aligned}$$
(161)

describing the vacuum magnetic and electric fields \(\mathcal {H},\mathcal {E}\in \mathbb {R}^3\), see [13].

The plasma variable \((v,H,p,S)\) is connected with the vacuum variable \((\mathcal {H},\mathcal {E})\) through the relations [13]

$$\begin{aligned} \partial _{t}\psi =v \cdot N,\ H\cdot N=0, \ \!\mathcal {H}\cdot N=0 \, ,\ [q]=0,\quad N \!\times \!\mathcal {E} = (N \cdot v) \mathcal {H},\quad \text{ on }\ \Gamma (t), \nonumber \\ \end{aligned}$$
(162)

where the jump of the total pressure across the interface is \([q]= q|_{\Gamma }-\frac{1}{2}|\mathcal {H}|^2_{|\Gamma }+\frac{1}{2}|\mathcal {E}|^2_{|\Gamma }\).

The stability of the linearized problem obtained from (156), (157), (161), (162) is shown in [5] under suitable stability conditions on \(\Gamma (t)\). The authors obtain a linearized problem for \(u=(v,H,p,S,\mathcal {H},\mathcal {E})\) of the form (1) with \(\mathcal {L}_\gamma \) as in (2), \(b_\gamma \) as in (3a), \(\mathcal {M}_\gamma \) as in (3b) with \(M_2=M_3=0\), that is the boundary operator has order zero in \(u\). Moreover, because of the special reductions, the boundary data are zero, i.e. \(g=0\) in (1b), and \(F\) in (1a) is such that the solution satisfies some additional constraints. It is proved that the solution of the linearized problem satisfies an a priori estimate similar to (11) (with \(g=0\)). The vacuum variable \((\mathcal {H},\mathcal {E})\) is estimated in the standard Sobolev space \(H^1\) with full regularity.

1.4 Contact Discontinuities

We consider the equations of ideal compressible MHD (156) for two-dimensional planar flows with respect to the unknown vector \(U=(p, v, H, S)\), with \(v(t,x)=(v_1,v_2)\in \mathbb R^2\), \(H(t,x)=(H_1,H_2)\in \mathbb R^2\), \(x=(x_1,x_2)\). For simplicity, let us assume that the plasma obeys the state equation of a polytropic gas

$$\begin{aligned} \rho (p, S)=Ap^{1/\gamma }e^{-S/\gamma },\quad A>0,\,\,\,\gamma >1\,. \end{aligned}$$
(163)

Following the notations already introduced for current vertex sheets, contact discontinuities are weak solutions of (156), that are smooth on either side of a smooth hypersurface \(\Gamma (t)=\{x_1=\psi (t,x_2)\}\) in \([0,T]\times {\mathbb R}^2\), satisfying at each point of the front \(\Gamma (t)\) suitable jump conditions. More precisely, one looks for smooth solutions \(U^\pm \) of (156) in \(\Omega ^\pm (t):=\{x_1\gtrless \psi (t,x_2)\}\), satisfying on \(\Gamma (t)\) the following conditions

$$\begin{aligned} v^+_N - \partial _t \psi =0,\quad \left[ v\right] =0,\quad \left[ H\right] =0,\quad H_N^\pm \ne 0,\quad \left[ p\right] =0, \end{aligned}$$
(164)

where \(N:=(1, -\partial _2\psi )\) is the space normal to the front \(\Gamma (t)\), \(H_N=H_1-\partial _2\psi H_2\).

After a change of independent variables that “flattens” the boundary, in [24] the authors perform a linearization of the free-boundary problem (156), (164) for contact discontinuities, around a suitable sufficiently smooth basic state \((\hat{p}, \hat{v}, \hat{H}, \hat{S}, \hat{\varphi })\), obeying the “stability” condition

$$\begin{aligned} \left[ \partial _1\hat{p}\right] \ge c_0>0,\quad \text{ on }\,\,\{x_1=\hat{\varphi }(t,x_2)\}\,. \end{aligned}$$
(165)

Under the preceding assumptions, the linearized problem can be recast in the form of (1) with \(\mathcal {L}_\gamma \) as in (2), \(b_\gamma =0\) and \(\mathcal {M}_\gamma \) of order one in \(U\) as in (3b). Moreover, because of the special reductions, the boundary data are zero, i.e. \(g=0\) in (1b), whereas the only nonzero components of \(F\) in (1a) are the ones corresponding to the equation for \(v\).

In [24] it is proved that the solution of the above linearized problem satisfies an a priori estimate in the Sobolev space \(H^1_{tan}\) similar to (11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morando, A., Secchi, P. & Trebeschi, P. On a Priori Energy Estimates for Characteristic Boundary Value Problems. J Fourier Anal Appl 20, 816–864 (2014). https://doi.org/10.1007/s00041-014-9335-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9335-4

Keywords

Mathematics Subject Classification

Navigation