Skip to main content
Log in

The Equivalence Between Seven Classes of Wavelet Multipliers and Arcwise Connectivity They Induce

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let A be a d×d expansive matrix with |detA|=2. An A-wavelet is a function \(\psi\in L^{2}(\mathbb{R}^{d})\) such that \(\{2^{\frac{j}{2}}\psi(A\cdot-k):\,j\in \mathbb{Z},\,k\in \mathbb{Z}^{d}\}\) is an orthonormal basis for \(L^{2}(\mathbb{R}^{d})\). A measurable function f is called an A-wavelet multiplier if the inverse Fourier transform of \(f\hat{\psi}\) is an A-wavelet whenever ψ is an A-wavelet, where \(\hat{\psi}\) denotes the Fourier transform of ψ. A-scaling function multiplier, A-PFW multiplier, semi-orthogonal A-PFW multiplier, MRA A-wavelet multiplier, MRA A-PFW multiplier and semi-orthogonal MRA A-PFW multiplier are defined similarly. In this paper, we prove that the above seven classes of multipliers are equivalent, and obtain a characterization of them. We then prove that if the set of all A-wavelet multipliers acts on some A-scaling function (A-wavelet, A-PFW, semi-orthogonal A-PFW, MRA A-wavelet, MRA A-PFW, semi-orthogonal MRA A-PFW), the orbit is arcwise connected in \(L^{2}(\mathbb{R}^{d})\), and that if the generator of an orbit is an MRA A-PFW, the orbit is equal to the set of all MRA A-PFWs whose Fourier transforms have same module, and is also equal to the set of all MRA A-PFWs with corresponding pseudo-scaling functions having the same module of their Fourier transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakić, D., Krishtal, I., Wilson, E.N.: Parseval frame wavelets with \(E_{n}^{(2)}\)-dilations. Appl. Comput. Harmon. Anal. 19, 386–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bownik, M.: A characterization of affine dual frames in \(L^{2}(\mathbb{R}^{n})\). Appl. Comput. Harmon. Anal. 8, 203–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bownik, M.: Intersection of dilates of shift-invariant spaces. Proc. Am. Math. Soc. 137, 563–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calogero, A.: A characterization of wavelets on general lattices. J. Geom. Anal. 10, 597–622 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chui, C.K., He, W., Stöckler, J.: Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13, 224–262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Boor, C., DeVore, R.A., Ron, A.: On the construction of multivariate (pre)wavelets. Constr. Approx. 9, 123–166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Book  MATH  Google Scholar 

  10. Kirat, I., Lau, K.S.: Classification of integral expanding matrices and self-affine tiles. Discrete Comput. Geom. 28, 49–73 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.-Z.: On a class of bidimensional nonseparable wavelet multipliers. J. Math. Anal. Appl. 270, 543–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, D.F., Cheng, J.F.: Some applications of E-wavelet multipliers. Chin. Q. J. Math. 19, 292–299 (2004)

    MathSciNet  Google Scholar 

  13. Li, Z., Shi, X.: Dyadic bivariate wavelet multipliers in \(L^{2}(\mathbb{R}^{2})\). Acta Math. Sin. Engl. Ser. 27, 1489–1500 (2011)

    Article  MathSciNet  Google Scholar 

  14. Li, Z., Shi, X.: Parseval frame wavelet multipliers in \(L^{2}(\mathbb{R}^{d})\). Chin. Ann. Math., Ser. B 33, 949–960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.-Z., Zhou, F.-Y.: The characterization of a class of multivariate MRA and semi-orthogonal Parseval frame wavelets. Appl. Math. Comput. 217, 9151–9164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y.-Z., Zhou, F.-Y.: GMRA-based construction of framelets in reducing subspaces of \(L^{2}(\mathbb{R}^{d})\). Int. J. Wavelets Multiresolut. Inf. Process. 9, 237–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Z., Dai, X., Diao, Y., Huang, W.: The path-connectivity of MRA wavelets in \(L^{2}(\mathbb{R}^{d})\). Ill. J. Math. 54, 601–620 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Li, Z., Dai, X., Diao, Y., Xin, J.: Multiplier, phase and connectivity of MRA wavelets in \(L^{2}(\mathbb{R}^{2})\). J. Fourier Anal. Appl. 16, 155–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paluszyński, M., Šikić, H., Weiss, G., Xiao, S.: Generalized low pass filters and MRA frame wavelets. J. Geom. Anal. 11, 311–342 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paluszyński, M., Šikić, H., Weiss, G., Xiao, S.: Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv. Comput. Math. 18, 297–327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ron, A., Shen, Z.: Affine systems in \(L^{2}(\mathbb{R}^{d})\): the analysis of the analysis operator. J. Funct. Anal. 148, 408–447 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. The Wutam Consortium: Basic properties of wavelets. J. Fourier Anal. Appl. 4, 575–594 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable suggestions, which greatly improve the readability of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Zhang Li.

Additional information

Communicated by David Walnut.

Supported by the National Natural Science Foundation of China (Grant No. 11271037), Beijing Natural Science Foundation (Grant No. 1122008) and the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM201110005030).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YZ., Xue, YQ. The Equivalence Between Seven Classes of Wavelet Multipliers and Arcwise Connectivity They Induce. J Fourier Anal Appl 19, 1060–1077 (2013). https://doi.org/10.1007/s00041-013-9282-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9282-5

Keywords

Mathematics Subject Classification (2010)

Navigation