Skip to main content
Log in

Non-orthogonal Fusion Frames and the Sparsity of Fusion Frame Operators

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Fusion frames have become a major tool in the implementation of distributed systems. The effectiveness of fusion frame applications in distributed systems is reflected in the efficiency of the end fusion process. This in turn is reflected in the efficiency of the inversion of the fusion frame operator \(S_{\mathcal{W}}\), which in turn is heavily dependent on the sparsity of \(S_{\mathcal{W}}\). We will show that sparsity of the fusion frame operator naturally exists by introducing a notion of non-orthogonal fusion frames. We show that for a fusion frame {W i ,v i } iI , if dim(W i )=k i , then the matrix of the non-orthogonal fusion frame operator \({\mathcal{S}}_{{\mathcal{W}}}\) has in its corresponding location at most a k i ×k i block matrix. We provide necessary and sufficient conditions for which the new fusion frame operator \({\mathcal{S}}_{{\mathcal{W}}}\) is diagonal and/or a multiple of an identity. A set of other critical questions are also addressed. A scheme of multiple fusion frames whose corresponding fusion frame operator becomes an diagonal operator is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodmann, B.G., Kutyniok, G.: Erasure-proof transmissions: fusion frames meet coding theory. In: Wavelets XIII, San Diego, CA, 2009. SPIE Proc., vol. 7446, pp. 744614-1–744614-11. SPIE, Bellingham (2009)

    Google Scholar 

  2. Boufounos, P., Kutyniok, G., Rauhut, H.: Compressed sensing for fusion frames. In: Wavelets XIII, San Diego, CA, 2009. SPIE Proc., vol. 7446, pp. 744614-1–744614-11. SPIE, Bellingham (2009)

    Google Scholar 

  3. Calderbank, R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Preprint

  4. Calderbank, R., Casazza, P.G., Heinecks, A., Kutyniok, G., Pezeshki, A.: Constructing fusion frames with desired parameters. In: Proceedings of SPIE, Wavelets XIII, San Diego, 2009, p. 744612 (2009)

    Google Scholar 

  5. Casazza, P.G., Kutyniok, G.: Frames of subspaces. Contemp. Math. 345, 87–114 (2004)

    Article  MathSciNet  Google Scholar 

  6. Casazza, P.G., Kutyniok, G.: Robustness of fusion frames under erasures of subspaces and local frame vectors. Contemp. Math. 464, 149–160 (2008)

    Article  MathSciNet  Google Scholar 

  7. Casazza, P.G., Fickus, M., Mixon, D., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30(2), 175–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casazza, P.G., Fickus, M., Mixon, D.G., Wang, Y., Zhou, Z.: Construction and existence of tight fusion frames. In: Proceedings of SPIE, Wavelets XIII, San Diego, 2009, p. 744613 (2009)

    Google Scholar 

  9. Casazza, P.G., Fickus, M., Mixon, D., Wang, Y., Zhou, Z.: Spectral tetris fusion frame constructions. Preprint

  10. Casazza, P.G., Heinecke, A., Krahmer, F., Kutyniok, G.: Optimally sparse frames. Preprint

  11. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casazza, P.G., Kutyniok, G., Li, S., Rozell, C.: Modeling sensor networks with fusion frames. In: Proceed. of SPIE—Wavelets XII, San Diego, vol. 6701, p. 670111910 (2007)

    Google Scholar 

  13. Chebira, A., Fickus, M., Mixon, D.G.: Filter bank fusion frames. Preprint

  14. Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10(4), 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, S., Ogawa, H.: Optimal noise suppression: a geometric nature of pseudoframes for subspaces. Adv. Comput. Math. 28(2), 141–155 (2008)

    Article  MathSciNet  Google Scholar 

  16. Li, S., Yan, D.: Frame fundamental sensor modeling and stability of one-sided frame perturbation. Acta Appl. Math. 107, 91–103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, S., Yao, Z., Yi, W.: Frame fundamental high resolution image fusion from inhomogeneous measurements. Preprint (2010)

  18. Massey, P., Ruiz, M., Stojanoff, D.: The structure of minimizers of the frame potential on fusion frames. Preprint

  19. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, W.: Stability of G-frames. J. Math. Anal. Appl. 326(2), 858–868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Unser, M., Aldroubi, A.: A general sampling theory for non-ideal acquisition devices. IEEE Trans. Signal Process. 42(11), 2915–2925 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shidong Li.

Additional information

Communicated by Hans G. Feichtinger.

The first author is supported by NSF DMS 1008183; the second author is supported by NSF DMS 1008183 DTRA/NSF 1042701, AFOSR F1ATA00183G003; the third author is supported by NSF DMS 0709384 and NSF DMS 1010058.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahill, J., Casazza, P.G. & Li, S. Non-orthogonal Fusion Frames and the Sparsity of Fusion Frame Operators. J Fourier Anal Appl 18, 287–308 (2012). https://doi.org/10.1007/s00041-011-9200-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9200-7

Keywords

Mathematics Subject Classification (2000)

Navigation