Skip to main content
Log in

Expression analysis of genes putatively associated with hygienic behavior in selected stocks of Apis mellifera L. from Argentina

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Hygienic behavior is an economically beneficial, heritable trait, which has evolved to limit the impact of honeybee pathogens. Selecting and breeding colonies with high levels of hygienic behavior has become a feasible and environmentally friendly strategy to control brood diseases in honeybee colonies worldwide. The identification of genes involved in the expression of this character may not only unravel molecular and biochemical pathways underlying hygienic behavior, but also serve as a practical approach to select disease resistance biomarkers useful for honeybee breeding programs. In the present work, we evaluated, at genetic level, Apis mellifera stocks selected for hygienic behavior, widely used for commercial apiculture in Argentina. We analyzed the expression profiles of five genes previously identified as candidates associated with hygienic behavior both in QTL and global gene expression studies in honeybees, more precisely, involved in perception and processing of olfactory information. We validated the differential expression of these genes as potentially responsible for behavioral differences in our selected stocks. Our results indicate that four of them (octopamine receptor, smell-impaired, odorant-binding protein 3, and odorant-binding protein 4) were differentially expressed between hygienic and non-hygienic bees within our highly hygienic colonies. The present findings improve our understanding of the molecular mechanisms underlying the differentiation of middle-age worker bees in their genetic propensity to perform hygienic behavior. This progress towards the genetic characterization of highly hygienic colonies that are commercially used in Argentine apiculture lays the groundwork for future development of targets for marker-assisted selection of disease-resistant honeybee stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arathi HS, Spivak M (2001) Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Anim Behav 62:57–66

    Article  Google Scholar 

  • Arathi HS, Burns I, Spivak M (2000) Ethology of hygienic behaviour in the honey bee Apis mellifera L. (Hymenoptera: Apidae): behavioural repertoire of hygienic bees. Ethology 106:365–379

    Article  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    Article  CAS  PubMed  Google Scholar 

  • Boecking O, Drescher W (1992) The removal response of Apis mellifera L. colonies to brood in wax and plastic cells after experimental and natural infestation with Varroa jacobsoni Oud. and to freeze-killed brood. Exp Appl Acarol 16:321–329

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg JL (1998) Fixed response thresholds and the regulation of division of labour in insect societies. Bull Math Biol 60:753–807

    Article  Google Scholar 

  • Boutin S, Alburaki M, Mercier PL, Giovenazzo P, Derome N (2015) Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives. BMC Genom 16:500

    Article  Google Scholar 

  • Büchler R, Berg S, Le Conte Y (2010) Breeding for resistance to Varroa destructor in Europe. Apidologie 41:393–408

    Article  Google Scholar 

  • Chakroborty NK, Bienefeld K, Menzel R (2015) Odor learning and odor discrimination of bees selected for enhanced hygienic behavior. Apidologie 46:499–514

    Article  CAS  Google Scholar 

  • Dallacqua RP, Simões ZLP, Bitondi MMG (2007) Vitellogenin gene expression in stingless bee workers differing in egg-laying behavior. Insect Soc 54:70–76

    Article  Google Scholar 

  • Danka RG, Harris JW, Villa JD, Dodds GE (2013) Varying congruence of hygienic responses to Varroa destructor and freeze-killed brood among different types of honeybees. Apidologie 44:447–457

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2014) InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380

    CAS  PubMed  Google Scholar 

  • Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LE, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends Ecol Evol 20:96–104

    Article  PubMed  Google Scholar 

  • Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilliam M, Taber S III, Richardson GV (1983) Hygienic behavior of honeybees en relation to chalkbrood disease. Apidologie 14:29–39

    Article  Google Scholar 

  • Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86:725–735

    Article  CAS  PubMed  Google Scholar 

  • Gramacho KP, Spivak M (2003) Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior. Behav Ecol Sociobiol 54:472–479

    Article  Google Scholar 

  • Guarna MM, Melathopoulos AP, Huxter E, Iovinella I, Parker R, Stoynov N, Tam A, Moon KM, Chan QWT, Pelosi P, White R, Pernal S, Foster LJ (2015) A search for protein biomarkers links olfactory signal transduction to social immunity. BMC Genom 16:63

    Article  Google Scholar 

  • Harbo JR, Harris JW (1999) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J Econ Entomol 92:261–265

    Article  Google Scholar 

  • Harbo JR, Harris JW (2005) Suppressed mite reproduction explained by the behaviour of adult bees. J Apic Res 44:21–23

    Article  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt GJ (2007) Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J Insect Physiol 53:399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji T, Yin L, Liu Z, Shen F, Shen J (2014) High-throughput sequencing identification of genes involved with Varroa destructor resistance in the eastern honeybee, Apis cerana. Genet Mol Res 13:9086–9096

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Robertson T, Mostajeran M, Robertson AJ, Qiu X (2016) Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing Varroa tolerance and susceptibility. Insect Mol Biol 25:272–282

    Article  CAS  PubMed  Google Scholar 

  • Lapidge KL, Oldroyd BP, Spivak M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89:565–568

    CAS  PubMed  Google Scholar 

  • Le Conte Y, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Séverac D, Cros-Arteil S, Navajas M (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol Biol 20:399–408

    Article  PubMed  Google Scholar 

  • Lockett GA, Almond EJ, Huggins TJ, Parker JD, Bourke AF (2016) Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp Gerontol 77:52–61

    Article  CAS  PubMed  Google Scholar 

  • Lourenço AP, Mackert A, Dos Santos Cristino A, Simões ZLP (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39:372–385

    Article  Google Scholar 

  • Masterman R, Smith BH, Spivak M (2000) Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L.) using proboscis extension reflex conditioning. J Insect Behav 13:87–101

    Article  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Mercer A, Menzel R (1982) The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. J Comp Physiol A 145:363–368

    Article  CAS  Google Scholar 

  • Momot JP, Rothenbuhler WC (1971) Behaviour genetics of nest cleaning in honeybees. VI. Interactions of age and genotype of bees, and nectar flow. J Apic Res 10:11–21

    Article  Google Scholar 

  • Mondet F, Alaux C, Severac D, Rohmer M, Mercer AR, Le Conte Y (2015) Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci Rep 5:10454

    Article  PubMed  PubMed Central  Google Scholar 

  • Moritz R (1988) Selection of group characters in honey bees (Apis mellifera). In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, Chichester, pp 118–124

  • Navajas M, Migeon A, Alaux C, Martin-Magniette ML, Robinson GE, Evans JD, Cros-Arteil S, Crauser D, Le Conte Y (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genom 9:301

    Article  CAS  Google Scholar 

  • Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annu Rev Entomol 61:417–432

    Article  CAS  PubMed  Google Scholar 

  • Nazzi F, DellaVedova G, D’Agaro M (2004) A semiochemical from brood cells infested by Varroa destructor triggers hygienic behaviour in Apis mellifera. Apidologie 35:65–70

    Article  CAS  Google Scholar 

  • Newton DC, Ostasiewski NJA (1986) A simplified bioassay for behavioral resistance to American Foulbrood in honey bees (Apis mellifera L). Am Bee J 126:278–281

    Google Scholar 

  • Oldroyd BP, Thompson GJ (2007) Behavioural genetics of the honey bee Apis mellifera. In: Simpson SJ (ed) Advances in insect physiology, vol. 33. Elsevier, Amsterdam, pp 1–49

  • Oxley P, Spivak M, Oldroyd BP (2010) Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol Ecol 19:1453–1461

    Article  Google Scholar 

  • Palacio MA, Figini EE, Ruffinengo SR, Rodriguez EM, Del Hoyo ML, Bedascarrasbure EL (2000) Changes in a population of Apis mellifera L. selected for hygienic behaviour and its relation to brood disease tolerance. Apidologie 31:471–478

    Article  Google Scholar 

  • Palacio MA, Rodriguez EM, Goncalves L, Bedascarrasbure EL, Spivak M (2010) Hygienic behaviors of honey bees in response to brood experimentally pin-killed or infected with Ascosphaera apis. Apidologie 41:602–612

    Article  Google Scholar 

  • Parker R, Guarna MM, Melathopoulos AP, Moon KM, White R, Huxter E, Pernal SF, Foster LJ (2012) Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome Biol 13:R81

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rein J, Mustard JA, Strauch M, Smith BH, Galizia CG (2013) Octopamine modulates activity of neural networks in the honey bee antennal lobe. J Comp Physiol A 199:947–962

    Article  CAS  Google Scholar 

  • Rinderer TE, Harris JW, Hunt G, De Guzman LI (2010) Breeding for resistance to Varroa destructor in North America. Apidologie 41:409–424

    Article  Google Scholar 

  • Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6:257–270

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:96–119

    Article  Google Scholar 

  • Rothenbuhler W (1964a) Behavior genetics of nest cleaning in honeybees. I. Responses of four inbred lines to disease killed brood. Anim Behav 12:578–583

    Article  Google Scholar 

  • Rothenbuhler W (1964b) Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. Am Zool 4:11–123

    Article  Google Scholar 

  • Scannapieco AC, Lanzavecchia SB, Parreño MA, Liendo MC, Cladera JL, Spivak M, Palacio MA (2016) Individual precocity, temporal persistence and task-specialization of hygienic bees from selected colonies of Apis mellifera. J Apic Sci 60:49–60

    Google Scholar 

  • Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld K, Hilker M, Genersch E (2012) Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. J Exp Biol 215:264–271

    Article  PubMed  Google Scholar 

  • Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies. J Comp Physiol A 187:53–61

    Article  CAS  PubMed  Google Scholar 

  • Sinakevitch I, Mustard JA, Smith BH (2011) Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS One 6:14536

    Article  Google Scholar 

  • Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9:735–748

    Article  CAS  PubMed  Google Scholar 

  • Spivak M, Downey DL (1998) Field assays for hygienic behavior in honey bees (Hymenoptera: Apidae). J Econ Entomol 91:64–70

    Article  Google Scholar 

  • Spivak M, Reuter G (1998a) Honey bee hygienic behavior. Am Bee J 138:283–286

    Google Scholar 

  • Spivak M, Reuter G (1998b) Performance of hygienic honey bee colonies in a commercial apiary. Apidologie 29:291–302

    Article  Google Scholar 

  • Spivak M, Reuter G (2001a) Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32:555–565

    Article  Google Scholar 

  • Spivak M, Reuter G (2001b) Varroa destructor infestation in untreated honey bee (Hymenoptera: Apidae) colonies selected for hygienic behavior. J Econ Entomol 94:326–331

    Article  CAS  PubMed  Google Scholar 

  • Spivak M, Masterman R, Ross R, Mesce KA (2003) Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol 55:341–354

    Article  CAS  PubMed  Google Scholar 

  • Spötter A, Gupta P, Mayer M, Reinsch N, Bienefeld K (2016) Genome-wide association study of a Varroa-specific defense behavior in honeybees (Apis mellifera). J Hered 107:220–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson J, Torto B, Kells S, Mesce K, Tumlinson J, Spivak M (2009) Volatile compounds from chalkbrood Ascosphaera apis infected larvae elict honey bee (Apis mellifera) hygienic behavior. J Chem Ecol 35:1088–1116

    Article  Google Scholar 

  • Tsuruda JM, Harris JW, Bourgeois L, Danka RG, Hunt GJ (2012) High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. PLoS One 7:48276

    Article  Google Scholar 

  • Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger H-J, Blenau W, Broeck JV (2010) The role of octopamine in locusts and other arthropods. J Insect Physiol 56:854–867

    Article  CAS  PubMed  Google Scholar 

  • Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman N, Starks P (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    Article  CAS  PubMed  Google Scholar 

  • Zakar E, Jávor A, Kusza S (2014) Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.). Insect Sci 61:207–215

    Article  Google Scholar 

  • Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262

    Article  Google Scholar 

  • Zayed A, Robinson GE (2012) Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 46:591–615

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu X, Zhang W, Han R (2010) Differential gene expression of the honey bees Apis mellifera and A. cerana induced by Varroa destructor infection. J Insect Physiol 56:1207–1218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Marla Spivak (Department of Entomology, University of Minnesota, USA) for her valuable comments on the manuscript and Analía Martinez (Unidad Integrada INTA Balcarce, FCA-Universidad de Mar del Plata, Buenos Aires Argentina) for helping at various stages of the experiments and for her technical support with hygienic breeding material. This research was supported by the National Agency for Promotion Science and Technology (ANPCyT, through PICT 0133-2011 Project) to ACS and by the National Apicultural Program—National Institute of Agricultural Technology (INTA) to MAP and SBL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Scannapieco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scannapieco, A.C., Mannino, M.C., Soto, G. et al. Expression analysis of genes putatively associated with hygienic behavior in selected stocks of Apis mellifera L. from Argentina. Insect. Soc. 64, 485–494 (2017). https://doi.org/10.1007/s00040-017-0567-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-017-0567-6

Keywords

Navigation