Skip to main content

Advertisement

Log in

Dispersal of Attaphila fungicola, a symbiotic cockroach of leaf-cutter ants

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

The myrmecophile cockroach Attaphila fungicola lives in the nests of leaf-cutter ants (Atta texana and A. cephalotes) and uses the female winged reproductives (i.e., female alates) of its host as vectors for the first phase of its dispersal. It is unknown whether A. fungicola remain with vectoring A. texana females after mating flights and throughout A. texana nest founding and subsequent colony development, or if the symbiotic cockroaches disperse to established A. texana  colonies, either on their own or while still attached to vectoring A. texana females. We captured A. fungicola attached to A. texana female alates as they prepared for mating flights and measured their survivorship in artificial brood chambers with de-alate, recently mated A. texana queens and their incipient gardens, and in a non-natal established fungal garden tended by A. texana workers. After 13 days, 100% of A. fungicola had died in brood chambers with queens, while 100% of A. fungicola remained alive in the fungal garden chamber. We tested the feasibility of alternative modes of dispersal to established colonies by placing A. fungicola attached and unattached to vectoring female alates in the proximity of an established A. texana colony directly after a mating flight, and recorded whether A. fungicola entered the non-natal nest. A significantly higher proportion of A. fungicola attached to vectoring alates entered the nest compared to unattached A. fungicola. We also placed A. fungicola attached to vectoring alates in a foraging chamber of a laboratory colony to determine if, once in the nest, A. fungicola could navigate to the fungal garden chamber; 100% of A. fungicola detached from their vectoring alates and entered the fungal garden chamber. We tested alate preference of A. fungicola by placing A. fungicola separately in containers with one A. texana female alate and one male alate; after 2 h, 71% of A. fungicola were attached to female alates and 0% to male alates. Finally, we report the first record of a male A. fungicola collected during a mating flight of A. texana. These observations accumulated from field and laboratory studies suggest that A. fungicola vectored by A. texana female alates may not remain with foundresses, but instead disperse between established colonies through one or more alternative mechanisms. This study helps elucidate a tripartite ant-fungus-cockroach interaction, and provides a foundation for future research on Attaphila dispersal and reproductive biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches: ecology, behavior, and natural history. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Bland JM, Altman GD (2004) The logrank test. BMJ 328:1073–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolívar I (1901) Un nuevo ortóptero mirmecófilo Attaphila Bergi. Común Mus Nac B Aires 1:331–336

    Google Scholar 

  • Bolívar I (1905) Les blattes myrmécophiles. Mitt Schweiz Entomol Ges 11:134–141

    Google Scholar 

  • Brossut R (1976) Étude morphologique de la blatte myrmécophile Attaphila fungicola Wheeler. Insect Soc 23:167–174

    Article  Google Scholar 

  • Cahan S, Julian GE (1999) Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav Ecol 10:585–591

    Article  Google Scholar 

  • Camargo RS, Forti LC, de Matos CAO, Brescovit AD (2015) Phoretic behaviour of Attacobius attarum (Roewer, 1935) (Araneae: Corinnidae: Corinninae) dispersion not associated with predation? J Natl Hist 49:1653–1658

    Article  Google Scholar 

  • Cole B (2009) The ecological setting of social evolution: the demography of ant populations. In: Gadau J, Fewell J (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Massachusetts, pp 74–104

    Google Scholar 

  • Erthal M, Tonhasca A (2001) Attacobius attarum spiders (Corinnidae): myrmecophilous predators of immature forms of the leaf-cutting ant Atta sexdens (Formicidae). Biotropica 33:374–376

    Google Scholar 

  • Fowler HG (1987) Colonization patterns of the leaf-cutting ant, Atta bisphaerica Forel: evidence for population regulation. J Appl Entomol 104:102–105

    Article  Google Scholar 

  • Fowler H, Pereira Da Silva V, Forti LC, Saes N (1986) Population dynamics of leaf-cutting ants: a brief review. In: Lofgren CS (ed) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 123–145

    Google Scholar 

  • Greenwood M (1926) The natural duration of cancer. Rep Public Health Med Subj 33:1–26

    Google Scholar 

  • Ichinose K, Rinaldi I, Forti LC (2004) Winged leaf-cutting ants on nuptial flights used as transport by Attacobius spiders for dispersal. Ecol Entomol 29:628–631

    Article  Google Scholar 

  • Jacoby M (1944) Observações e experiências sobre Atta sexdensrubropilosa Forel visando facilitar seu combate. Bol Min Agric Rio 12:1–55

    Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. JASA 53:457–481

    Article  Google Scholar 

  • Krantz GW, Moser JC (2012) A new genus and species of Macrochelidae (Acari: Mesostigmata) associated with the texas leafcutting ant, Atta texana (Buckley) in Louisiana, USA. Int J Acarol 38:576–582

    Article  Google Scholar 

  • Marti HE, Carlson AL, Brown BV, Mueller UG (2015) Foundress queen mortality and early colony growth of the leafcutter ant, Atta texana (Formicidae: Hymenoptera). Insect Soc 62:357–363

    Article  Google Scholar 

  • Moser JC (1964) Inquiline roach responds to trail-marking substance of leaf-cutting ants. Science 143:1048–1049

    Article  CAS  PubMed  Google Scholar 

  • Moser JC (1967) Mating activities of Atta texana (Hymenoptera: Formicidæ). Insect Soc 14:295–312

    Article  Google Scholar 

  • Moser JC (2006) Complete excavation and mapping of a texas leafcutting ant nest. Ann Entomol Soc Am 99:891–897

    Article  Google Scholar 

  • Moser JC, Bento JMS, Della Lucia TMC, Cameron RS, Heck NM (2004) Eye size and behaviour of day- and night-flying leaf cutting ant alates. J Zool 264:69–75

    Article  Google Scholar 

  • Mueller UG, Mikheyev AS, Hong E, Sen R, Warren DL, Solomon SE, Ishak HD, Cooper M, Miller JL, Shaffer KA, Juenger TE (2011) Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis. Proc Natl Acad Sci 108:4053–4056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller UG, Mikheyev AS, Solomon SE, Cooper M (2011) Frontier mutualism: coevolutionary patterns at the northern range limit of the leaf-cutter ant-fungus symbiosis. Proc R Soc B Biol Sci 278:3050–3059

    Article  Google Scholar 

  • Navarrete-Heredia JL (2001) Beetles associated with Atta and Acromyrmex ants (Hymenoptera: Formicidae: Attini). Trans Am Entomol Soc 127:381–429

    Google Scholar 

  • Nehring V, Dani FR, Calamai L, Turillazzi S, Bohn H, Klass KD, d’Ettore P (2016) Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants. BMC Ecol 16:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Perfecto I, Vandermeer J (1993) Distribution and turnover rate of a population of Atta cephalotes in a tropical rain forest in Costa Rica. Biotropica 25:316

    Article  Google Scholar 

  • Platnick NI, Baptista RLC (1995) On the spider genus Attacobius (Araneae: Dionycha). Am Mus Novit 3120:1–9

    Google Scholar 

  • Prugnolle F, de Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JG, Montoya-Lerma J, Calle Z (2013) First record of Attaphila fungicola (Blattaria: Polyphagidae) in Atta cephalotes nests (Hymenoptera: Myrmicinae) in Colombia. Bol Cient Mus Hist Nat Univ Caldas 17:219–225

    Google Scholar 

  • Roth LM (1995) Pseudoanaplectinia yumotoi, a new ovoviviparous myrmecophilous cockroach genus and species from Sarawak (Blattaria: Blattellidae; Blattellinae). Psyche J Entomol 102: 79–87

    Article  Google Scholar 

  • Sánchez-Peña SR (2005) Essays on organismal aspects of the fungus-growing ant symbiosis: ecology, experimental symbiont switches and fitness of Atta, and a new theory on the origin of ant fungiculture. Dissertation, University of Texas at Austin

    Google Scholar 

  • Sánchez-Peña SR, Davis DR, Mueller UG (2003) A gregarious, mycophagous, myrmecophilous moth, Amydria anceps Walsingham (Lepidoptera: Acrolophidae), living in Atta mexicana (F. Smith) (Hymenoptera: Formicidae) spent fungal culture accumulations. Proc Entomol Soc Wash 105:186–194

    Google Scholar 

  • Verhoeven KJ, Biere A (2013) Geographic parthenogenesis and plant-enemy interactions in the common dandelion. BMC Evol Biol 13:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrijenhoek RC, Parker ED (2009) Geographical parthenogenesis: general purpose genotypes and frozen niche variation. In: Schön I, Martens K, Dijk P (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer Netherlands, Dordrecht, pp 99–131

    Chapter  Google Scholar 

  • Waller DA, Moser JC (1990) Invertebrate enemies and nest associates of the leaf-cutting ant Atta texana (Buckley) (Formicidae, Attini). In: Vander Meer RK et al (eds) Applied myrmecology: a world perspective. Westview Press, Boulder, pp 256–273

    Google Scholar 

  • Weber NA (1972) Gardening ants, the attines. American Philosophical Society, Philadelphia

    Google Scholar 

  • Wheeler WM (1900) A new myrmecophile from the mushroom gardens of the texan leaf-cutting ant. Am Natl 34:851–862

    Article  Google Scholar 

  • Wheeler WM (1910) Ants: their structure, development and behavior. Columbia University Press, New York

    Google Scholar 

  • Zepeda-Paulo F, Lavandero B, Mahéo F, Dion E, Outreman Y, Simon J-C, Figueroa CC (2015) Does sex-biased dispersal account for the lack of geographic and host-associated differentiation in introduced populations of an aphid parasitoid? Ecol Evol 5:2149–2161

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Jones, H. Marti, M. Dixon, T. Olson, and A. Santillana for help with collecting; J. Lee for field and lab assistance; C. Medici for field assistance; R. Plowes for permission to work at the Brackenridge Field Station; A. Wild for permission to include his photographs; K-D. Klass for help with identification of specimens; and D. Friedman, T. Stewart, F. Roces, C. Smith, A. Carlson, and E. Dietrich for comments on the manuscript. The study was funded by a Texas Ecolab award to ZIP and National Science Foundation award DEB-1354666 to UGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. I. Phillips.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video clip of A. fungicola interacting with A. texana workers in Fungal Garden treatment. (MOV 23435 KB)

Video clip of female A. texana alate with attached A. fungicola entering non-natal A. texana nest in field. (MOV 21146 KB)

Video clip of A. fungicola on vectoring alate in lab colony.sx (MOV 15735 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, Z.I., Zhang, M.M. & Mueller, U.G. Dispersal of Attaphila fungicola, a symbiotic cockroach of leaf-cutter ants. Insect. Soc. 64, 277–284 (2017). https://doi.org/10.1007/s00040-016-0535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-016-0535-6

Keywords

Navigation