Skip to main content

Advertisement

Log in

Dispersal of non-myrmecochorous plants by a “keystone disperser” ant in a Mediterranean habitat reveals asymmetric interdependence

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

In contrast to other plant–animal mutualisms, seed dispersal interactions, and particularly seed dispersal by ants, are generally considered asymmetric, non-specialized relationships in which dispersers depend less on plants than vice versa. Although myrmecochory is well understood in many terrestrial ecosystems, dispersal of non-elaiosome-bearing seeds by ants has barely been studied outside the Neotropics. Aphaenogaster senilis, a common ant in Southern Spain, collects a great variety of non-myrmecochorous diaspores along with insect prey. At our study site, fleshy fruits of Arum italicum, Phillyrea angustifolia and Pistacia lentiscus represent up to one-fourth of the items collected by A. senilis from June to November. However, they are mostly ignored by other ants. In the laboratory, the addition of A. italicum fruits to A. senilis insect-based diet increased male production and both worker and queen pupae size. Seeds were transported up to 8 m away from the mother plant and deposited in a favorable habitat allowing a relatively high proportion of germination. Given important differences in seed production between species, our data suggest that A. senilis removes virtually all seeds of A. italicum, but a negligible fraction of P. lentiscus seeds. We conclude that in contrast to the common view, dispersal of non-myrmecochorous Mediterranean plants by ants might be an important phenomenon. Keystone disperser ants like A. senilis probably obtain an important fitness advantage from non-myrmecochorous diaspore collection. However, plant benefit may vary greatly according to the amount of seeds per individual plant and the existence of alternative dispersal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcántara J.M., Rey P.J., Manzaneda A.J., Boulay R., Ramírez J.M. and Fedriani J.M. 2007. Geographic variation in the adaptive landscape for seed size at dispersal in the myrmecochorous Helleborus foetidus. Evol. Ecol. 21: 411-430

    Google Scholar 

  • Aranda-Rickert A. and Fracchia S. 2011. Pogonomyrmex cunicularius as the keystone disperser of elaiosome-bearing Jatropha excisa seeds in semi-arid Argentina. Entomol. Exp. Appl. 139: 91-102

    Google Scholar 

  • Aronne G. and Wilcock C.C. 1994. First evidence of myrmecochory in fleshy fruited shrubs of the Mediterranean region. New Phytol. 127: 781-788

    Google Scholar 

  • Bas J.M., Oliveras J. and Gomez C. 2009. Myrmecochory and short-term seed fate in Rhamnus alaternus: ant species and seed characteristics. Acta Oecol. 35: 380-384

    Google Scholar 

  • Beattie A. and Hughes L. 2002. Ant-plant interactions. In: Plant Animal Interactions (Herrera C.M. and Pellmyr O., Eds). Blackwell Science, Oxford. pp 221-235

  • Böhning-Gaese K., Gaese B. and Rabemanantsoa S.B. 1999. Importance of primary and secondary seed dispersal in the malagasy tree Commiphora guillaumini. Ecology 80: 821-832

    Google Scholar 

  • Bond W.J. and Slingsby P. 1984. Collapse of an ant-plant mutualism: the Argentine ant (Iridomyrmex humilis) and myrmecochorous Proteaceae. Ecology 65: 1031-1037

    Google Scholar 

  • Bono J.M. and Heithaus E.R. 2002. Sex ratios and the distribution of elaiosomes in colonies of the ant, Aphaenogaster rudis. Insect. Soc. 49: 320-325

    Google Scholar 

  • Boulay R., Fedriani J.M., Manzaneda A.J. and Cerdá X. 2005. Indirect effects of alternative food resources in an ant-plant interaction. Oecologia 144: 72-79

    Google Scholar 

  • Boulay R., Coll-Toledano J. and Cerdá X. 2006. Geographic variations in Helleborus foetidus elaiosome lipid composition: implications for dispersal by ants Chemoecology 16: 1-7

    Google Scholar 

  • Boulay R., Carro F., Soriguer R. and Cerdá X. 2007a. Synchrony between fruit maturation and effective disperser’s foraging activity increases seed protection against seed predators. Proc. R. Soc. B 274: 2515-2522

  • Boulay R., Coll-Toledano J., Manzaneda J.A. and Cerdá X. 2007b. Geographic variations in seed-dispersal by ants: are plant and seed traits decisive? Naturwissenschaften 94: 242-246

  • Boulay R., Hefetz A., Cerdá X., Devers S., Francke W., Twele R. and Lenoir A. 2007c. Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size. Behav. Ecol. Sociobiol. 61: 1531-1541

  • Boulay R., Carro F., Soriguer R. and Cerdá X. 2009a. Small-scale indirect effects determine the outcome of a tripartite plant-disperser-granivore interaction. Oecologia 161: 529-537

  • Boulay R., Cerdá X., Fertin A., Ichinose K. and Lenoir A. 2009b. Brood development into sexual females depends on the presence of a queen but not on temperature in an ant dispersing by colony fission, Aphaenogaster senilis. Ecol. Entomol. 34: 595-602

  • Brew C.R., O’Dowd D.J. and Rae I.D. 1989. Seed dispersal by ants: behaviour-releasing compounds in elaiosomes. Oecologia 80: 490-497

    Google Scholar 

  • Bronstein J.L. 1994. Our current understanding of mutualism. Q. Rev. Biol. 69: 31-51

    Google Scholar 

  • Caut S., Barroso A., Amor F. Cerdá X. and Boulay R. in press. A year in an ant’s life: opportunism and seasonal variation in the foraging ecology of Aphaenogaster senilis Ecoscience

  • Cerdá X., Angulo E., Boulay R. and Lenoir A. 2009. Individual and collective foraging decisions: a field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63: 551-562

    Google Scholar 

  • Christianini A.V., Mayhé-Nunes A.J. and Oliveira P.S. 2007. The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a Neotropical savanna. J. Trop. Ecol. 23: 343-351

    Google Scholar 

  • Christianini A.V. and Oliveira P.S. 2009. The relevance of ants as seed rescuers of a primarily bird-dispersed tree in the Neotropical cerrado savanna. Oecologia 160: 735-745

    Google Scholar 

  • Christianin V. and Oliveira P.S. 2010. Birds and ants provide complementary seed dispersal in a neotropical savanna J. Ecol. 98: 573-582

    Google Scholar 

  • Debussche M., Cortez J. and Rimbault I. 1987. Variation in fleshy fruit composition in the Mediterranean region: the importance of ripening season, life-form, fruit type and geo-graphical distribution. Oikos 49: 244-252

    Google Scholar 

  • Eisner T. 1957. A comparative morphological study of the proventriculus of ants (Hymenoptera: Formicidae). Bull. Mus. Comp. Zool. Harv. Coll. 116: 439-490

    Google Scholar 

  • Espadaler X. and Gómez C. 1996. Seed production, predation and dispersal in the Mediterranean myrmecochore Euphorbia characias (Euphorbiaceae). Ecography 19: 7-15

    Google Scholar 

  • Espadaler X. and Gómez C. 1997. Soil surface searching and transport of Euphorbia characias seeds by ants. Acta Oecol. 18: 39-46

    Google Scholar 

  • Fenner M. and Thompson K. 2004. The Ecology of Seeds. Cambridge University Press, Cambridge

  • Fischer R.C., Ölzant S.M., Wanek W. and Mayer V. 2005. The fate of Corydalis cava elaiosomes within an ant colony of Myrmica rubra: elaiosomes are preferentially fed to larvae. Insect. Soc. 52: 55-62

    Google Scholar 

  • Fischer R.C., Richter A., Hadacek F. and Mayer V. 2008. Chemical differences between seeds and elaiosomes indicate an adaptation to nutritional needs of ants Oecologia 155: 539-547

    Google Scholar 

  • Fokuhl G., Heinze J. and Poschlod P. 2007. Colony growth in Myrmica rubra with supplementation of myrmecochorous seeds Ecol. Res. 22: 845-847

    Google Scholar 

  • Fokuhl G., Heinze J. and Poschlod P. 2012. Myrmecochory by small ants - Beneficial effects through elaiosome nutrition and seed dispersal. Acta Oecol. 38: 71-76

    Google Scholar 

  • Fourcassié V. and Oliveira P.S. 2002. Foraging ecology of the giant Amazonian ant Dinoponera gigantea (Hymenoptera, Formicidae, Ponerinae): activity schedule, diet and spatial foraging patterns. J. Nat. Hist. 18: 2211-2227

    Google Scholar 

  • Gammans N., Bullock J.M. and Schönrogge K. 2005. Ant benefits in a seed dispersal mutualism. Oecologia 146: 43-49

    Google Scholar 

  • Giladi I. 2006. Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos 112: 481-492

    Google Scholar 

  • Gorb E. and Gorb S. 2003. Seed Dispersal by Ants in a Deciduous Forest Ecosystem. Kluwer, Dordrecht

  • Gove A.D., Majer J.D. and Dunn R.R. 2007. A keystone ant species promotes seed dispersal in a “diffuse” mutualism. Oecologia 153: 687-697

    Google Scholar 

  • Grooms L. 2006. The pros and cons of TZ testing. Seed Today 10: 58-60

    Google Scholar 

  • Heithaus E.R. 1981. Seed predation by rodents on 3 ant-dispersed plants. Ecology 62: 136-145

    Google Scholar 

  • Herrera C.M. 1989. Frugivory and seed dispersal by carnivorous mammals and associated fruit characteristics, in undisturbed Mediterranean habitats. Oikos 55: 250-262

    Google Scholar 

  • Herrera C.M. 1995. Plant-vertebrate seed dispersal systems in the Mediterranean: ecological, evolutionary, and historical determinants. Annu. Rev. Ecol. Syst. 26: 705-727

    Google Scholar 

  • Herrera C.M. 2001. Dispersión de semillas por animales en el Mediterráneo: ecología y evolución. In: Ecosistemas mediterráneos. Análisis funcional (Zamora R. and Pugnaire F.I., Eds). CSIC - Asociación Española de Ecología. Madrid, Spain, pp 125-152

  • Herrera C.M. 2002. Seed dispersal by vertebrates. In: PlantAnimal Interactions (Herrera C.M. and Pellmyr O., Eds). Blackwell, Oxford, pp 185-208

  • Horvitz C.C. and Schemske D.W. 1986. Seed dispersal of a Neotropical myrmecochore: variation in removal rates and dispersal distance. Biotropica 18: 319-323

    Google Scholar 

  • Hughes L. and Westoby M. 1992. Fate of seeds adapted for dispersal by ants in Australian sclerophyll vegetation. Ecology 73: 1285-1299

    Google Scholar 

  • Hughes L., Westoby M. and Jurado E. 1994. Convergence of elaiosomes and insect prey: evidence from ant foraging behavior and fatty acid composition. Funct. Ecol. 8: 358-365

    Google Scholar 

  • Hulme P. 1997. Post-dispersal seed predation and the establishment of vertebrate dispersed plants in Mediterranean scrublands. Oecologia 111: 91-98

    Google Scholar 

  • Janzen D.H. 1983. Seed and pollen dispersal by animals: convergence in the ecology of contamination and sloppy harvest. Biol. J. Linn. Soc. 20: 103-113

    Google Scholar 

  • Jordano P. 1989. Pre-dispersal biology of Pistacia lentiscus (Anacardiaceae): cumulative effects on seeds removal by birds. Oikos 55: 375-386

    Google Scholar 

  • Jordano P. 1995. Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant–animal interactions. Am. Nat. 145: 163-191

    Google Scholar 

  • Lubertazzi D., Lubertazzi M.A.A., McCoy N., Gove A.D., Majer J.D. and Dunn R.R. 2010. The ecology of a keystone seed disperser, the ant Rhytidoponera violacea. J. Insect. Sc. 10: 158

    Google Scholar 

  • Manzaneda A.J., Rey P. and Boulay R. 2007. Geographic and temporal variations in the ant–seed dispersal assemblage of the perennial herb Helleborus foetidus. Biol. J. Linn. Soc. 92: 135-150

    Google Scholar 

  • Manzaneda A.J. and Rey P.J. 2012. Geographical and interspecific variation and the nutrient-enrichment hypothesis as an adaptive advantage of myrmecochory. Ecography 35: 322-332

    Google Scholar 

  • Marussich W.A. 2006. Testing myrmecochory from the ant’s perspective: The effects of Datura wrightii and D. discolor on queen survival and brood production in Pogonomyrmex californicus. Insect. Soc. 53: 403-411

  • McKey D. 1975. The ecology of coevolved seed dispersal systems. In: Coevolution of Animals and Plants (Gilbert L.E. and Raven P.H., Eds). University of Texas Press, Austin, USA. pp 159-191

  • Méndez M. and Díaz A. 2001. Flowering dynamics in Arum italicum (Araceae): relative role of inflorescence traits, flowering synchrony, and pollination context on fruit initiation Am. J. Bot. 88: 1774-1780

    Google Scholar 

  • Morales M.A. and Heithaus E.R. 1998. Food from seed-dispersal mutualism shifts sex ratios in colonies of the ant Aphaenogaster rudis. Ecology 79: 734-739

    Google Scholar 

  • Ness J.H., Morin D.F. and Giladi I. 2009. Uncommon specialization in a mutualism between a temperate herbaceous plant guild and an ant: are Aphaenogaster ants keystone mutualists? Oikos 118: 1793-1804

    Google Scholar 

  • Passos L. and Oliveira P.S. 2004. Interaction between ants and fruits of Guapira opposita (Nyctaginaceae) in a Brazilian sandy plain rainforest: ant effects on seeds and seedlings. Oecologia 139: 376-382

    Google Scholar 

  • Pfeiffer M., Huttenlocher H. and Ayasse M. 2010. Myrmecochorous plants use chemical mimicry to cheat seed-dispersing ants. Funct. Ecol. 24: 545-555

    Google Scholar 

  • Pizo M.A. and Oliveira P.S. 1998. Interactions between ants and seeds of a non-myrmecochorous neotropical tree, Cabralea canjerana (Meliaceae), in the atlantic forest of southeast Brazil. Am. J. Bot. 85: 669-674

    Google Scholar 

  • Pizo M.A. and Oliveira P.S. 2000. The use of fruits and seeds by ants in the Atlantic forest of southeast Brazil. Biotropica 32: 851-861

    Google Scholar 

  • R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Roberts J.T. and Heithaus E.R. 1986. Ants rearrange the vertebrate-generated seed shadow of a neotropical fig tree. Ecology 67: 1046-1051

    Google Scholar 

  • Snow D.W. 1971. Evolutionary aspects of fruit-eating by birds. Ibis 113: 194-202

    Google Scholar 

  • Traveset A. 1994. Cumulative effects on the reproductive output of Pistacia terebinthus (Anacardiaceae). Oikos 71: 152-162

    Google Scholar 

  • Wang B.C. and Smith T.B. 2002. Closing the seed dispersal loop. Trends Ecol. Evol. 17: 379-385

    Google Scholar 

  • Wheelwright N.T. and Orians G.H. 1982. Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. Am. Nat. 119: 4020-413

    Google Scholar 

  • Zelikova T.J., Dunn R.R. and Sanders N.J. 2008. Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecol. 34: 155-162

    Google Scholar 

Download references

Acknowledgments

We are grateful to Ana Carvajal for assistance in the laboratory and Dr Marcos Méndez for information on the biology of Arum italicum. Jacqueline Minett helped editing English. We are also grateful to Dr Elena Angulo, Prof Johan Billen and two anonymous reviewers for greatly improving the manuscript. This work was funded by MICINN and FEDER (projects CGL2009-12472 to RB and CGL2009-09690 to XC) and MICINN (project CONSOLIDER-MONTES CSD2008-00040 to RB and XC); AB thanks the Consejería de Educación (Junta de Andalucía) for work leave. We thank the authorities of Doñana Natural Park for providing permits and facilities to conduct this study. All experiments comply with current Spanish legislation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Boulay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (DOCX 6819 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroso, Á., Amor, F., Cerdá, X. et al. Dispersal of non-myrmecochorous plants by a “keystone disperser” ant in a Mediterranean habitat reveals asymmetric interdependence. Insect. Soc. 60, 75–86 (2013). https://doi.org/10.1007/s00040-012-0268-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-012-0268-0

Keywords

Navigation