Skip to main content
Log in

Workers, sexuals, or both? Optimal allocation of resources to reproduction and growth in annual insect colonies

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Understanding decisions about the allocation of resources into colony growth and reproduction in social insects is one of the challenging issues in sociobiology. In their seminal paper, Macevicz and Oster predicted that, for most annual insect colonies, a bang–bang strategy should be favoured by selection, i.e. a strategy characterised by an “ergonomic phase” with exponential colony growth followed by a “reproductive phase” with all resources invested into the production of sexuals. Yet, there is empirical evidence for the simultaneous investment into the production of workers and sexuals in annual colonies (graded control). We, therefore, re-analyse and extend the original model of Macevicz and Oster. Using basic calculus, we can show that sufficiently strong negative correlation between colony size and worker efficiency or increasing mortality of workers with increasing colony size will favour the evolution of graded allocation strategies. By similar reasoning, graded control is predicted for other factors limiting colony productivity (for example, if queens’ egg laying capacity is limited).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson C. and Ratnieks F.L.W. 1999. Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. Am. Nat. 154: 521–535

    Article  PubMed  Google Scholar 

  • Beekman M., Lingeman R., Kleijne F.M. and Sabelis M.W. 1998. Optimal timing of the production of sexuals in bumblebee colonies. Entomol. Exp. Appl. 88: 147–154

    Article  Google Scholar 

  • Billick I. 2001. Density dependence and colony growth in the ant species Formica neorufibarbis. J. Anim. Ecol. 2: 895–905

    Article  Google Scholar 

  • Bouwma A.M., Nordheim E.V. and Jeanne R.L. 2006. Per-capita productivity in a social wasp: no evidence for a negative effect of colony size. Insect. Soc. 53: 412–419

    Article  Google Scholar 

  • Bulmer M.G. 1981. Worker–queen conflict in annual social Hymenoptera. J. Theor. Biol. 93: 239–251

    Article  Google Scholar 

  • Cassill D. 2002. Yoyo-bang: a risk-aversion investment strategy by a perennial insect society. Oecologia 132: 150–158

    Article  Google Scholar 

  • Clouse R. 2001. Some effects of group size on the output of beginning nests of Mischocyttarus mexicanus (Hymenoptera: Vespidae). Florida Entomol. 84: 418–425

    Article  Google Scholar 

  • Gadagkar R. 1991. Demographic prediction to predisposition to the evolution of eusociality—a hierarchy of models. Proc. Natl. Acad. Sci. USA 88: 10993–10997

    Article  PubMed  CAS  Google Scholar 

  • Greene A. 1984. Production schedules of vespine wasps—an empirical-test of the bang–bang optimization model. J. Kans. Entomol. Soc. 57: 545–568

    Google Scholar 

  • Hansell M. 1987. Nest building as a facilitating and limiting factor in the evolution of eusociality in the Hymenoptera. Oxf. Surv. Evol. Biol. 4: 155–181

    Google Scholar 

  • Hee J., Holway D., Suarez A. and Case T. 2000. Role of propagule size in the success of incipient colonies of the invasive argentine ant. Conserv. Biol. 14: 559–563

    Article  Google Scholar 

  • Heino M. and Kaitala V. 1999. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J. Evol. Biol. 12: 423–429

    Article  Google Scholar 

  • Heinze J., Hölldobler B. and Peeters C. 1994. Conflict and cooperation in ant societies. Naturwissenschaften 81: 489–497

    Article  CAS  Google Scholar 

  • Houston A., Schmid-Hempel P. and Kacelnik A. 1988. Foraging strategy, worker mortality, and the growth of the colony in social insects. Am. Nat. 131: 107–114

    Article  Google Scholar 

  • Iwasa Y. 2000. Dynamic optimization of plant growth. Evol. Ecol. Res. 2: 437–455

    Google Scholar 

  • Jeanne R.L. 1986. The organization of work in Polybia occidentalis: costs and benefits of specialization in a social wasp. Behav. Ecol. Sociobiol. 19: 333–341

    Article  Google Scholar 

  • Jeanne R.L. and Nordheim E.V. 1996. Productivity in a social wasp: per capita output increases with swarm size. Behav. Ecol. 7: 43–48

    Article  Google Scholar 

  • Jun J., Pepper J.W., Savage V.M., Gillooly J.F. and Brown J.H. 2003. Allometric scaling of ant foraging trail networks. Evol. Ecol. Res. 5: 297–303

    Google Scholar 

  • Karsai I. and Wenzel J.W. 1998. Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proc. Natl. Acad. Sci. USA 95: 8665–8669

    Article  PubMed  CAS  Google Scholar 

  • Kaspari M. and O’Donnell S. 2003. High rates of army ant raids in the neotropics and implications for ant colony and community structure. Evol. Ecol. Res. 5: 933–939

    Google Scholar 

  • Kikuta N. and Tsuji K. 1999. Queen and worker policing in the monogynous and monandrous ant, Diacamma sp. Behav. Ecol. Sociobiol. 46: 180–189

    Article  Google Scholar 

  • King D. and Roughgarden J. 1982a. Multiple switches between vegetative and reproductive growth in annual plants. Theor. Popul. Biol. 21: 194–204

    Article  Google Scholar 

  • King D. and Roughgarden J. 1982b. Graded allocation between vegetative and reproductive growth for annual plants in growing seasons of random length. Theor. Popul. Biol. 22: 1–16

    Article  Google Scholar 

  • King D. and Roughgarden J. 1983. Energy allocation patterns of the California grassland annuals Plantago erecta and Clarkia rubicunda. Ecology 64: 16–24

    Article  Google Scholar 

  • Kozlowski J. and Wiegert R.G. 1987. Optimal age and size at maturity in annuals and perennials with determinate growth. Evol. Ecol. 1: 231–244

    Article  Google Scholar 

  • Lika K. and Nisbet R.M. 2000. A dynamic energy budget model based on partitioning of net production. J. Math. Biol. 41: 361–386

    Article  PubMed  CAS  Google Scholar 

  • Macevicz S. and Oster G. 1976. Modeling social insect populations. 2. Optimal reproductive strategies in annual eusocial insect colonies. Behav. Ecol. Sociobiol. 1: 265–282

    Article  Google Scholar 

  • Mangel M. and Clark C.W. 1988 Dynamic Modeling in Behavioral Ecology. Princeton University Press, Princeton. 320 pp

    Google Scholar 

  • McCauley E., Murdoch W.W., Nisbet R.M. and Gurney W.S.C. 1990. The physiological ecology of Daphnia: development of a model of growth and reproduction. Ecology 71: 703–715

    Article  Google Scholar 

  • Michener C.D. 1964. Reproductive efficiency in relation to colony size in hymenopterous societies. Insect. Soc. 11: 317–342

    Article  Google Scholar 

  • Mitesser O., Weissel N., Strohm E. and Poethke H.J. 2007. Adaptive dynamic resource allocation in annual eusocial insects: environmental variation will not necessarily promote graded control. BMC Ecol. 7: 16

    Article  PubMed  Google Scholar 

  • Mitesser O., Weissel N., Strohm E. and Poethke H.J. 2007. Optimal investment allocation in primitively eusocial bees: a balance model based on resource limitation of the queen. Insect. Soc. 54: 234–241

    Article  Google Scholar 

  • Mitesser O., Weissel N., Strohm E. and Poethke H.J. 2006. The evolution of activity breaks in the nest cycle of annual eusocial bees: a model of delayed exponential growth. BMC Evol. Biol. 6: 1–12

    Article  Google Scholar 

  • Nakata K. and Tsuji K. 1996. The effect of colony size on conflict over male-production between gamergate and dominant workers in the ponerine ant Diacamma sp. Ethol. Ecol. Evol. 8: 147–156

    Google Scholar 

  • Naug D. and Wenzel J. 2006. Constraints on foraging success due to resource ecology limit colony productivity in social insects. Behav. Ecol. Sociobiol. 60: 62–68

    Article  Google Scholar 

  • Okuda N., Tayasu I. and Yanagisawa Y. 1998. Determinate growth in a paternal mouthbrooding fish whose reproductive success is limited by buccal capacity. Evol. Ecol. 12: 681–699

    Article  Google Scholar 

  • Oster G., Eshel I. and Cohen D. 1977. Worker–queen conflict and the evolution of social insects. Theor. Popul. Biol. 12: 49–85

    Article  PubMed  CAS  Google Scholar 

  • Oster G.F. and Wilson E.O. 1978 Caste and Ecology in the Social Insects. Princeton University Press, Princeton. 352 pp

    Google Scholar 

  • Perrin N. and Sibly R.M. 1993. Dynamic-models of energy allocation and investment. Annu. Rev. Ecol. Syst. 24: 379–410

    Article  Google Scholar 

  • Perrin N., Sibly R.M. and Nichols N.K. 1993. Optimal-growth strategies when mortality and production-rates are size-dependent. Evol. Ecol. 7: 576–592

    Article  Google Scholar 

  • Queller D.C. 1989. The evolution of eusociality—reproductive head starts of workers. Proc. Natl. Acad. Sci. USA 86: 3224–3226

    Article  PubMed  Google Scholar 

  • Reeve H.K. and Keller L. 1999 Levels of selection: burying the units of selection debate and unearthing the crucial new issues. In: Levels of Selection in Evolution (L. Keller, Ed.). Princeton University Press, Princeton. pp 3–15

    Google Scholar 

  • Roff D.A. 2002 Life History Evolution. Sinauer Associates, Sunderland. 527 pp

    Google Scholar 

  • Roff D.A., Heibo E. and Vollestad L.A. 2006. The importance of growth and mortality costs in the evolution of the optimal life history. J. Evol. Biol. 19: 1920–1930

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Hempel P. 1998 Parasites in Social Insects. Princeton University Press, Princeton. 392 pp

    Google Scholar 

  • Schmid-Hempel P. and Schmid-Hempel R. 1984. Life duration and turnover of foragers in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). Insect. Soc. 31: 350–360

    Article  Google Scholar 

  • Shreeves G. and Field J. 2002. Group size and direct fitness in social queues. Am. Nat. 159: 81–95

    Article  PubMed  Google Scholar 

  • Smith A.R., Wcislo W.T., Donnell S.O. 2007. Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 61: 1111–1120

    Article  Google Scholar 

  • Stearns S.C. 1992 The Evolution of Life Histories. Oxford University Press, Oxford. 249 pp

    Google Scholar 

  • Stearns S.C. 2000. Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87: 476–486

    Article  PubMed  CAS  Google Scholar 

  • Stevens M., Hogendoorn K. and Schwarz M. 2007. Evolution of sociality by natural selection on variances in reproductive fitness: evidence from a social bee. BMC Evol. Biol. 7: 153

    Article  PubMed  Google Scholar 

  • Strassmann J. 1985. Worker mortality and the evolution of castes in the social wasp Polistes exclamans. Insect. Soc. 32: 275–285

    Article  Google Scholar 

  • Strassmann J.E., Queller Q.C. and Hughes C.R. 1988. Predation and the evolution of sociality in the paper wasp Polistes bellicosus. Ecology 69: 1497–1505

    Article  Google Scholar 

  • Strohm E. and Bordon-Hauser A. 2003. Advantages and disadvantages of large colony size in a halictid bee: the queen’s perspective. Behav. Ecol. 14: 546–553

    Article  Google Scholar 

  • Sugiyama H. and Hirose T. 1991. Growth schedule of Xanthium canadense—does it optimize the timing of reproduction? Oecologia 88: 55–60

    Article  Google Scholar 

  • Thomas M.L. 2003. Seasonality and colony-size effects on the life-history characteristics of Rhytidoponera metallica in temperate south-eastern Australia. Aust. J. Zool. 51: 551–567

    Article  Google Scholar 

  • Tindo M., Keene M. and Dejean A. 2008. Advantages of multiple foundress colonies in Belonogaster juncea juncea l.: greater survival and increased productivity. Ecol. Entomol. 33: 293–297

    Google Scholar 

  • Tschinkel W.R. 1991. Insect sociometry, a field in search of data. Insect. Soc. 38: 77–82

    Article  Google Scholar 

  • Tschinkel W.R. 1993. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol. Mon. 63: 425–457

    Article  Google Scholar 

  • Tschinkel W.R. 1999. Sociometry and sociogenesis of colony-level attributes of the Florida harvester ant (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 92: 80–89

    Google Scholar 

  • Verhulst P.F. 1838. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique 10: 113–121

    Google Scholar 

  • Worley A.C. and Harder L.D. 1996. Size-dependent resource allocation and costs of reproduction in Pinguicula vulgaris (Lentibulariaceae). J. Ecol. 84: 195–206

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Thomas Hovestadt and two anonymous reviewers for their helpful and valuable comments on earlier drafts of the manuscript, and Christian Hausler for help with the English language. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 554, TP C6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Poitrineau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poitrineau, K., Mitesser, O. & Poethke, H.J. Workers, sexuals, or both? Optimal allocation of resources to reproduction and growth in annual insect colonies. Insect. Soc. 56, 119–129 (2009). https://doi.org/10.1007/s00040-009-0004-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-009-0004-6

Keywords

Navigation