Skip to main content
Log in

On quasihomomorphisms with noncommutative targets

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We describe structure of quasihomomorphisms from arbitrary groups to discrete groups. We show that all quasihomomorphisms are “constructible”, i.e., are obtained via certain natural operations from homomorphisms to some groups and quasihomomorphisms to abelian groups. We illustrate this theorem by describing quasihomomorphisms to certain classes of groups. For instance, every unbounded quasihomomorphism to a torsion-free hyperbolic group H is either a homomorphism to a subgroup of H or is a quasihomomorphism to an infinite cyclic subgroup of H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Abels. An example of a finitely presented solvable group, In: “Homological Group Theory” (Proc. Sympos., Durham, 1977). London Math. Soc. Lecture Note Ser., Vol. 36. Cambridge University Press, Cambridge (1979), pp. 205–211.

  2. Bestvina M., Fujiwara K.: Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6, 69–89 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birman J., Lubotzky A., McCarthy J.: Abelian and solvable subgroups of the mapping class groups. Duke Math. J., 50, 1107–1120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature. Springer, New York (1999).

  5. R. Brooks. Some remarks on bounded cohomology. In: Annals of Mathematics Studies, Vol. 97. Princeton University Press, Princeton (1981), pp. 53–63.

  6. K. Brown. Cohomology of Groups. Springer, New York (1982).

  7. M. Burger and N. Monod. Bounded cohomology of lattices in higher rank Lie groups. J. Eur. Math. Soc. (2)1 (1999), 199–235.

  8. M. Burger, N. Ozawa, and A. Thom. On Ulam stability. Isr. J. Math. (1)193 (2013), 109–129.

  9. D. Calegari. “scl”, Mathematical Society of Japan Monographs, 2009.

  10. D. Calegari and D. Zhuang. Stable W-length. In: Topology and Geometry in Dimension Three, Contemp. Math., Vol. 560. Am. Math. Soc., Providence (2011), pp. 145–169.

  11. A. Casson and S. Bleiler. Automorphisms of Surfaces After Nielsen and Thurston. Cambridge University Press, Cambridge (1988)

  12. D. B. A. Epstein and K. Fujiwara. The second bounded cohomology of word-hyperbolic groups. Topology (6)36 (1997), 1275–1289.

  13. B. Farb and D. Margalit. A primer on mapping class groups. In: Princeton Mathematical Series, Vol. 49. Princeton University Press, Princeton (2012).

  14. B. Farb and H. Masur. Superrigidity and mapping class groups. Topology 37 (1998), 1169–1176.

  15. K. Fujiwara. The second bounded cohomology of a group acting on a Gromov-hyperbolic space. Proc. Lond. Math. Soc. (3) (1)76 (1998), 70–94.

  16. S. Gersten. Bounded cocycles and combings of groups. Int. J. Algebra Comput. (3)2 (1992), 307–326.

  17. E. Ghys. Groups acting on the circle. Enseign. Math. (2) (3–4)47 (2001), 329–407.

  18. T. Hartnick and P. Schweitzer. On quasioutomorphism groups of free groups and their transitivity properties (2014). arXiv:1403.2786. (Preprint)

  19. N. Heuer. QHM’s on symmetric spaces. Master thesis, ETH Zurich (2015).

  20. S. Ivanov and A. Ol’shansky. On finite and locally finite subgroups of free Burnside groups of large even exponents. J. Algebra, 195 (1997), 241–284.

  21. N. Ivanov. Subgroups of Teichmüller modular groups. Translated from the Russian by E. J. F. Primrose and revised by the author. Translations of Mathematical Monographs, Vol. 115. American Mathematical Society, Providence (1992).

  22. V. Kaimanovich and H. Masur. The Poisson boundary of the mapping class group. Invent. Math. 125 (1996), 221–264.

  23. D. Kazhdan. On \({\epsilon}\)-representations. Isr. J. Math. (4)43 (1982), 315–323.

  24. J. McCarthy. Normalizers and centralizers of pseudo-Anosov mapping classes (1982). (Preprint, revised version 1994).

  25. W. Neumann and L. Reeves. Central extensions of word hyperbolic groups. Ann. Math. (2) (1)145 (1997), 183–192.

  26. A. Ol’shansky. Geometry of defining relations in groups. In: Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (1991).

  27. D. Osin. (2014). (Private communication).

  28. N. Ozawa. Quasi-homomorphism rigidity with non-commutative targets. J. Reine Angew. Math. 655 (2011), 89–104.

  29. M. S. Raghunathan. Torsion in cocompact lattices in coverings of Spin(2, n). Math. Ann. 266 (1984), 403–419.

  30. K. Ruane. Dynamics of the action of a CAT(0) group on the boundary. Geom. Dedicata (1–3)84 (2001), 81–99.

  31. P. Rolli. Quasi-morphisms on free groups (2009). arXiv:0911.4234. (Preprint).

  32. Shtern A.I.: Roughness and approximation of quasi-representations of amenable groups. Math. Notes 65, 760–769 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Ulam. A collection of mathematical problems. In: Interscience Tracts in Pure and Applied Mathematics, Vol. 8. Interscience Publishers, New York (1960).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kapovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, K., Kapovich, M. On quasihomomorphisms with noncommutative targets. Geom. Funct. Anal. 26, 478–519 (2016). https://doi.org/10.1007/s00039-016-0364-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0364-9

Keywords

Navigation