Skip to main content
Log in

On the differentiability of Lipschitz functions with respect to measures in the Euclidean space

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

For every finite measure \({\mu}\) on \({{\mathbb{R}}^n}\) we define a decomposability bundle \({V(\mu,\,\cdot)}\) related to the decompositions of \({\mu}\) in terms of rectifiable one-dimensional measures. We then show that every Lipschitz function on \({{\mathbb{R}}^n}\) is differentiable at \({\mu}\)-a.e. \({x}\) with respect to the subspace \({V(\mu,\,x)}\), and prove that this differentiability result is optimal, in the sense that, following (Alberti et al., Structure of null sets, differentiability of Lipschitz functions, and other problems, 2016), we can construct Lipschitz functions which are not differentiable at \({\mu}\)-a.e. \({x}\) in any direction which is not in \({V(\mu,\,x)}\). As a consequence we obtain a differentiability result for Lipschitz functions with respect to (measures associated to) \({k}\)-dimensional normal currents, which we use to extend certain basic formulas involving normal currents and maps of class \({C^1}\) to Lipschitz maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti Giovanni: Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Section A 2(123), 239–274 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberti, Giovanni; Csörnyei, Marianna; Preiss, David. Structure of null sets in the plane and applications. European Congress of Mathematics. Proceedings of the 4th Congress (4ECM, Stockholm, June 27-July 2, 2004), pp. 3–22. Edited by A. Laptev. European Mathematical Society (EMS), Zürich 2005.

  3. Alberti, Giovanni; Csörnyei, Marianna; Preiss, David. Differentiability of Lipschitz functions, structure of null sets, and other problems. Proceedings of the international congress of mathematicians (ICM 2010, Hyderabad, India, August 19-27, 2010). Volume 3 (invited lectures), pp. 1379–1394. Edited by R. Bhatia et al. Hindustan Book Agency, New Delhi, and World Scientific, Hackensack (New Jersey), 2010.

  4. Alberti, Giovanni; Csörnyei, Marianna; Preiss, David. Structure of null sets, differentiability of Lipschitz functions, and other problems. Paper in preparation, 2016.

  5. Alberti, Giovanni; Massaccesi, Annalisa. Paper in preparation.

  6. Bate David: Structure of measures in Lipschitz differentiability spaces. J. Amer. Math. Soc. 2(28), 421–482 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Cheeger Jeff: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 3(9), 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Pauw Thierry, Huovinen Petri: Points of \({\varepsilon}\)-differentiability of Lipschitz functions from \({{\mathbb{R}}^n}\) to \({{\mathbb{R}}^{n-1}}\). Bull. London Math. Soc. 5(34), 539–550 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Philippis, Guido; Rindler, Filip. On the structure of \({{\mathscr{A}}}\)-free measures and applications. arXiv:1601.06543.

  10. Doré Michael, Maleva Olga: A compact universal differentiability set with Hausdorff dimension one. Israel J. Math. 2(191), 889–900 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dymond, Michael; Maleva, Olga. Differentiability inside sets with upper Minkowski dimension one. Michigan Math. J., to appear. arXiv:1305.3154.

  12. Federer, Herbert. Geometric measure theory. Grundlehren der mathematischen Wissenschaften, 153. Springer, Berlin-New York 1969. Reprinted in the series Classics in Mathematics. Springer, Berlin-Heidelberg 1996.

  13. Jones, Peter W. Product formulas for measures and applications to analysis and geometry. Talk given at the conference “Geometric and algebraic structures in mathematics”, Stony Brook University, May 2011. http://www.math.sunysb.edu/Videos/dennisfest/.

  14. Kechris, Alexander S. Classical descriptive set theory. Graduate texts in mathematics, 156. Springer, New York, 1995.

  15. Keith Stephen: A differentiable structure for metric measure spaces. Adv. Math. 2(183), 271–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirchheim Bernd: Deformations with finitely many gradients and stability of quasiconvex hulls. C. R. Acad. Sci. Paris Sér. I Math. 3(332), 289–294 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krantz, Steven G.; Parks, Harold R. Geometric integration theory. Cornerstones. Birkhäuser, Boston 2008.

  18. Lindenstrauss, Joram; Preiss, David; Tišer, Jaroslav. Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces. Annals of Mathematics Studies, 179. Princeton University Press, Princeton, 2012.

  19. Maleva, Olga; Preiss, David. Directional upper derivatives and the chain rule formula for locally Lipschitz functions on Banach spaces. Trans. Amer. Math. Soc., to appear. http://web.mat.bham.ac.uk/~malevao/papers/MalevaPreiss.

  20. Marchese, Andrea; Schioppa, Andrea. Lipschitz functions with prescribed blowups at many points. Paper in preparation.

  21. Máthé, András. Paper in preparation.

  22. Morgan, Frank. Geometric measure theory. A beginner’s guide. Fourth edition. Elsevier/Academic Press, Amsterdam, 2009.

  23. Paolini Emanuele, Stepanov Eugene: Structure of metric cycles and normal one-dimensional currents. J. Funct. Anal. 6(264), 1269–1295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Preiss David: Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 2(91), 312–345 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Preiss David, Speight Gareth: Differentiability of Lipschitz functions in Lebesgue null sets. Invent. Math. 2(199), 517–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Preiss, David; Tišer, Jaroslav. Points of non-differentiability of typical Lipschitz functions. Real Anal. Exchange, (1)20 (1994/95), 219–226.

  27. Rainwater John: A note on the preceding paper. Duke Math. J. 36, 799–800 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rudin, Walter. Function theory in the unit ball of \({\mathbb{C}^n}\). Grundlehren der mathematischen Wissenschaften, 241. Springer, Berlin-New York 1980. Reprinted in the series Classics in Mathematics. Springer, Berlin-Heidelberg 2008.

  29. Schioppa, Andrea. Metric Currents and Alberti representations. arXiv:1403.7768.

  30. Simon, Leon. Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis 3. Australian National University, Canberra, 1983.

  31. Smirnov, Stanislav. Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional currents. Algebra i Analiz, (4)5 (1993), 206–238. Translation in St. Petersburg Math. J. (4)5 (1994), 841–867.

  32. Srivastava, Shashi Mohan. A course on Borel sets. Graduate texts in mathematics, 180. Springer, New York, 1998.

  33. Zahorski Zygmunt: Sur l’ensemble des points de non-dérivabilité d’une fonction continue. Bull. Soc. Math. France 74, 147–178 (1946)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Marchese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, G., Marchese, A. On the differentiability of Lipschitz functions with respect to measures in the Euclidean space. Geom. Funct. Anal. 26, 1–66 (2016). https://doi.org/10.1007/s00039-016-0354-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0354-y

Keywords and phrases

Mathematics Subject Classification

Navigation