Skip to main content
Log in

Tangents and Rectifiability of Ahlfors Regular Lipschitz Differentiability Spaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We study Lipschitz differentiability spaces, a class of metric measure spaces introduced by Cheeger in [Ch99]. We show that if an Ahlfors regular Lipschitz differentiability space has charts of maximal dimension, then, at almost every point, all its tangents are uniformly rectifiable. In particular, at almost every point, such a space admits a tangent that is isometric to a finite-dimensional Banach space. In contrast, we also show that if an Ahlfors regular Lipschitz differentiability space has charts of non-maximal dimension, then these charts are strongly unrectifiable in the sense of Ambrosio-Kirchheim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio L., Kirchheim B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 3(318), 527–555 (2000)

    Article  MathSciNet  Google Scholar 

  2. AmbrosioL.KleinerB.Le Donne E.: Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane. J. Geom. Anal. 3(19), 509–540 (2009)

    Google Scholar 

  3. D. Bate. Structure of measures in Lipschitz differentiability spaces. J. Amer. Math. Soc., to appear (2015). arXiv:1208.1954

  4. M. Bonk, B. Kleiner. Rigidity for quasi-Möbius group actions. J. Diff. Geom. 61 (2002), 81–106

  5. M. Bonk and B. Kleiner. Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary. Geom. Topol. 9 (2005), 219–246

  6. M. Bourdon and H. Pajot. Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. Proc. Amer. Math. Soc. (8)127 (1999), 2315–2324

  7. D. Burago, Y. Burago and S. Ivanov. “A Course in Metric Geometry”, volume 33 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, RI (2001)

  8. J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), 428–517

  9. J. Cheeger and B. Kleiner. Differentiability of Lipschitz functions from metric measure spaces to Banach spaces with the Radon-Nikodym property. Geom. Funct. Anal. 19 (2009), 127–183

  10. J. Cheeger and B. Kleiner. Inverse limit spaces satisfying a Poincaré inequality. Preprint (2013). arXiv:1312.5227.

  11. G. David. Morceaux de graphes Lipschitziens et intégrales singulières sur un surface. Rev. Mat. Iberoamericana, (1)4 (1988), 73–114

  12. G. David and S. Semmes. “Fractured Fractals and Broken Dreams”. Oxford University Press, New York (1997)

  13. G. C. David. Bi-Lipschitz pieces between manifolds. Rev. Mat. Iberoam. arXiv:1312.3911 (to appear)

  14. J. Heinonen. “Lectures on Analysis on Metric Spaces”. Universitext. Springer, New York (2001)

  15. J. Heinonen. Geometric embeddings of metric spaces, volume 90 of Report. University of Jyväskylä Department of Mathematics and Statistics. University of Jyväskylä, Jyväskylä (2003)

  16. Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 1(181), 1–61 (1998)

    Article  MathSciNet  Google Scholar 

  17. Keith S.: A differentiable structure for metric measure spaces.. Adv Math. 2(183), 271–315 (2004)

    Article  MathSciNet  Google Scholar 

  18. S. Keith. Measurable differentiable structures and the Poincaré inequality. Indiana Univ. Math. J. (4)53 (2004), 1127–1150

  19. B. Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc. (1)121 (1994), 113–123

  20. B. Kleiner and J. Mackay. Differentiable structures on metric measure spaces: A primer. Preprint (2011). arXiv:1108.1324

  21. T. Laakso. Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal., (1)10 (2000), 111–123

  22. E. Le Donne. Metric spaces with unique tangents. Ann. Acad. Sci. Fenn. Math. (2)36 (2011), 683–694

  23. J.M. Mackay and J.T. Tyson. “Conformal Dimension”, volume 54 of University Lecture Series. American Mathematical Society, Providence, RI (2010)

  24. P. Mattila. “Geometry of sets and measures in Euclidean spaces’’, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)

  25. P. Mattila. Measures with unique tangent measures in metric groups. Math. Scand.(2)97 (2005), 298–308

  26. D. Preiss. Geometry of measures in R n: distribution, rectifiability, and densities. Ann. of Math. (2) (3)125 (1987), 537–643

  27. A. Schioppa. Derivations and Alberti representations. Preprint (2013). arXiv:1311.2439

  28. S. Semmes. Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.) (2)2 (1996), 155–295

  29. S. Semmes. Measure-preserving quality within mappings. Rev. Mat. Iberoamericana (2)16 (2000), 363–458

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy C. David.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, G.C. Tangents and Rectifiability of Ahlfors Regular Lipschitz Differentiability Spaces. Geom. Funct. Anal. 25, 553–579 (2015). https://doi.org/10.1007/s00039-015-0325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0325-8

Mathematics Subject Classification

Navigation