Skip to main content
Log in

Additive Patterns in Multiplicative Subgroups

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The study of sum and product problems in finite fields motivates the investigation of additive structures in multiplicative subgroups of such fields. A simple known fact is that any multiplicative subgroup of size at least q 3/4 in the finite field F q must contain an additive relation x + y = z. Our main result is that there are infinitely many examples of sum-free multiplicative subgroups of size Ω(p 1/3) in prime fields F p . More complicated additive relations are studied as well. One representative result is the fact that the elements of any multiplicative subgroup H of size at least q 3/4+o(1) of F q can be arranged in a cyclic permutation so that the sum of any pair of consecutive elements in the permutation belongs to H. The proofs combine combinatorial techniques based on the spectral properties of Cayley sum-graphs with tools from algebraic and analytic number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon and F.R.K.Chung. Explicit construction of linear sized tolerant networks. Discrete Mathematics 72 (1988), 15–19. (Proc. First Japan Conf. on Graph Theory and Applications, Hakone, Japan, 1986.)

  2. Alon N.: Large sets in finite fields are sumsets. Journal of Number Theory, 126, 110–118 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon N., Krivelevich M.: Constructive bounds for a Ramsey-type problem. Graphs and Combinatorics, 13, 217–225 (1997)

    MATH  MathSciNet  Google Scholar 

  4. N. Alon and J.H. Spencer. The Probabilistic Method, Third Edition. Wiley, New York (2008) xv+352 pp.

  5. Bourgain J.: Multilinear exponential sums in prime fields under optimal entropy condition on the sources. GAFA, 18, 1477–1502 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Bourgain J., Katz N., Tao T.: A sum-product estimate in finite fields, and applications. Geometric Functional Analysis, 14(1), 27–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. M.C.Chang. Short character sums for composite moduli. arXiv:1201.0299v1, (2012).

  8. Chvátal V., Erdős P.: A note on Hamiltonian circuits. Discrete Mathematics, 2, 111–113 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conway J.H., Jones A.J.: Trigonometric Diophantine equations (On vanishing sums of roots of unity). Acta Arithmetica, 30(3), 229–240 (1976)

    MATH  MathSciNet  Google Scholar 

  10. P. Erdős and E. Szemerédi. On sums and products of integers. In: Studies In Pure Mathematics. Birkhäuser, Basel (1983), pp. 213–218.

  11. Gallagher P.X.: Primes in progressions to prime-power modulus. Inventiones Mathematicae, 16, 191–201 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Giulietti M.: On cyclic caps in 4-dimensional projective spaces. Designs, Codes Cryptography, 47, 135–143 (2008)

    Article  MathSciNet  Google Scholar 

  13. S.W. Graham and C.J. Ringrose. Lower bounds for least quadratic non-residues, In: Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math., Vol. 85. Birkhauser, Boston (1990), pp. 269–309.

  14. D.R. Heath-Brown. Siegel zeros and the least prime in an arithmetic progression. Quartely Journal of Mathematics Oxford Series, (2) 41(164) (1990), 405–418.

  15. D.R. Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proceedings of London Mathematical Society, (3) 64(2) (1992), 265–338.

  16. A.J. Hoffman. On eigenvalues and colorings of graphs. In: B. Harris Ed., Graph Theory and its Applications, Academic, New York and London, (1970), pp. 79–91.

  17. Huxley M.N.: Large values of Dirichlet polynomials, III.. Acta Arithmetica, 26, 435–444 (1974)

    MathSciNet  Google Scholar 

  18. Iwaniec H.: On zeros of Dirichlets L series. Inventiones Mathematicae, 23, 97–104 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Iwaniec and E. Kowalski. Analytic Number Theory. Amer. Math. Soc., Providence (2004).

  20. Jackson B.: Hamilton cycles in regular 2-connected graphs. Journal of Combinatorial Theory B, 29, 27–46 (1980)

    Article  MATH  Google Scholar 

  21. Jutila M.: On Linnik’s constant. Mathematica Scandinavica, 41, 45–62 (1977)

    MATH  MathSciNet  Google Scholar 

  22. Krivelevich M., Sudakov B.: Sparse pseudo-random graphs are Hamiltonian. Journal of Graph Theory, 42, 17–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Krivelevich and B. Sudakov. Pseudo-random graphs. In: More Sets, Graphs and Numbers, Bolyai Society Mathematical Studies Vol. 15. Springer, Berlin (2006), pp. 199–262.

  24. Krivelevich M., Sudakov B., Szabó T.: Triangle factors in pseudo-random graphs. Combinatorica, 24, 403–426 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, Essex (1983).

  26. Mahler K.: Zur Approximation algebraischer Zahlen. I. (German). Mathematische Annalen, 107(1), 691–730 (1933)

    Article  MathSciNet  Google Scholar 

  27. H.L. Montgomery, R. C. Vaughan and T.D. Wooley. Some remarks on exponential sums associated with k-th powers. Math. Proc. Cambridge Philos. Soc. (1)118 (1995), 21–33.

  28. A. Sárkőzy. On products and shifted products of residues modulo p. Integers, (2)8 (2008), A9, 8.

  29. Z.W. Sun. Some new problems in additive combinatorics. arXiv:1309.1679v3, (2013).

  30. Szőnyi T.: On cyclic caps in projective spaces. Designs Codes Cryptography, 8, 327–332 (1996)

    Google Scholar 

  31. A. Weil. Sur les courbes algébriques et les variéstés qui sèn déduisent. Actualités Sci. Ind., 1041 (1948), Herman, Paris.

  32. Yekhanin S.: A note on plane pointless curves. Finite Fields and their Applications, 13, 418–422 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xylouris T.: On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions. Acta Arithmetica, 150(1), 65–91 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Xylouris. Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression [The zeros of Dirichlet L-functions and the least prime in an arithmetic progression], Dissertation for the degree of Doctor of Mathematics and Natural Sciences at the University of Bonn, Bonn, 2011, Bonner Mathematische Schriften [Bonn Mathematical Publications], 404. Universität Bonn, Mathematisches Institut, Bonn, 2011, 110 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noga Alon.

Additional information

Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant, by an ISF grant, by the Israeli I-Core program and by the Simonyi Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alon, N., Bourgain, J. Additive Patterns in Multiplicative Subgroups. Geom. Funct. Anal. 24, 721–739 (2014). https://doi.org/10.1007/s00039-014-0270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0270-y

Keywords

Navigation