Skip to main content
Log in

Fractal Weyl laws for asymptotically hyperbolic manifolds

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

For asymptotically hyperbolic manifolds with hyperbolic trapped sets we prove a fractal upper bound on the number of resonances near the essential spectrum, with power determined by the dimension of the trapped set. This covers the case of general convex cocompact quotients (including the case of connected trapped sets) where our result implies a bound on the number of zeros of the Selberg zeta function in disks of arbitrary size along the imaginary axis. Although no sharp fractal lower bounds are known, the case of quasifuchsian groups, included here, is most likely to provide them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Alexandrova Semi-classical wavefront set and Fourier integral operators, Can. J. Math. 60:2 (2008), 241–263.

  2. C.J. Bishop and P.W. Jones Hausdorff dimension and Kleinian groups, Acta Math., 179:1 (1997), 1–39.

    Google Scholar 

  3. J.-M. Bony and J.-Y. Chemin Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122:1 (1994), 77–118.

    Google Scholar 

  4. D. Borthwick and P. Perry Scattering poles for asymptotically hyperbolic manifolds, Trans. Amer. Math. Soc. 354:3 (2002), 1215–1231.

    Google Scholar 

  5. Bowen R.: Hausdorff dimension of quasi-circles, Inst. Hautes Etudes Sci. Publ. Math. 50, 11–25 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. U. Bunke and M. Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. of Math. (2) 149:2 (1999), 627–689.

    Google Scholar 

  7. K. Datchev and A. Vasy, Propagation through trapped sets and semiclassical resolvent estimates, Ann. Inst. Fourier (Grenoble) 62:6 (2012), 2347–2377.

    Google Scholar 

  8. M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press (1999).

  9. S. Dyatlov, Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes, Ann. Henri Poincaré, 13:5 (2012), 1101–1156.

    Google Scholar 

  10. S. Dyatlov, Resonance projectors, and asymptotics for r-normally hyperbolic trapped sets, preprint 1301.5633.

  11. S. Dyatlov and C. Guillarmou, Microlocal limits of plane waves and Eisenstein functions preprint, arXiv:1204.1305.

  12. F. Faure and M. Tsujii, Prequantum transfer operator for Anosov diffeomorphism (Preliminary version), preprint, arXiv:1206.0282.

  13. D. Fried, The zeta functions of Ruelle and Selberg Ann. Ecole Norm. Sup. 19:4 (1986), 491–517.

    Google Scholar 

  14. J.K. Geerlings, Limit sets of Kleinian groups: properties, parameters, and pictures, undergraduate thesis, Emory University, (2009) http://pid.emory.edu/ark:/25593/1b7z9.

  15. C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108:3 (1987), 391–421.

  16. C.R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152:1 (2003), 89–118.

  17. A. Grigis and J. Sjöstrand, Microlocal analysis for differential operators: an introduction, London Mathematical Society Lecture Note Series, 196, Cambridge University Press (1994).

  18. C. Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129:1 (2005), 1–37.

    Google Scholar 

  19. C. Guillarmou, Resonances and scattering poles on asymptotically hyperbolic manifolds, Math. Res. Lett. 12:1 (2005), 103–109.

    Google Scholar 

  20. C. Guillarmou and R. Mazzeo, Spectral analysis of the Laplacian on geometrically finite hyperbolic manifolds, Invent. Math. 187:1 (2012), 99–144.

  21. V. Guillemin and S. Sternberg, Geometric asymptotics, AMS (1990).

  22. V. Guillemin and S. Sternberg, Semi-classical analysis, lecture notes, http://www-math.mit.edu/~vwg/semiclassGuilleminSternberg.pdf.

  23. L. Guillopé, K.K. Lin and M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys. 245:1 (2004), 149–176.

    Google Scholar 

  24. L. Guillopé and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Asymptotic Anal. 11:1 (1995), 1–22.

    Google Scholar 

  25. L. Guillopé and M. Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal. 129:2 (1995), 364–389.

    Google Scholar 

  26. L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. (2) 145:3 (1997), 597–660.

  27. L. Hörmander, The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators, Springer (1994).

  28. D. Jakobson and F. Naud, Lower bounds for resonances of infinite-area Riemann surfaces, Anal. PDE 3:2 (2010), 207–225.

    Google Scholar 

  29. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press (1995).

  30. S. Katok, Fuchsian groups, Chicago Lectures in Math., University of Chicago Press (1992).

  31. W. Klingenberg, Riemannian geometry, de Gruyter Stud. Math., 1, De Gruyter (1982).

  32. W. Lu, S. Sridhar and M. Zworski, Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett. 91:15 (2003), 154101.

    Google Scholar 

  33. B. Maskit, Kleinian groups, Grundleheren Math. Wiss., 287, Springer (1988).

  34. R.R. Mazzeo and R.B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Func. Anal. 75:2 (1987), 260–310.

    Google Scholar 

  35. Melrose R.: Polynomial bounds on the number of scattering poles. J. Funct. Anal. 53, 287–303 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and scattering theory, Lecture Notes in Pure and Appl. Math. 161 (1994), 85–130.

  37. F. Naud, Density and localization of resonances for convex co-compact hyperbolic surfaces, preprint, arXiv:1203.4378.

  38. P.J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, 143, Cambridge University Press (1989).

  39. S. Nonnenmacher, Spectral problems in open quantum chaos, Nonlinearity 24:12 (2011), R123–R167.

    Google Scholar 

  40. S. Nonnenmacher, J. Sjöstrand and M. Zworski, From open quantum systems to open quantum maps, Comm. Math. Phys. 304:1 (2011), 1–48.

    Google Scholar 

  41. S. Nonnenmacher, J. Sjöstrand and M. Zworski, Fractal Weyl law for open quantum chaotic maps, to appear in Ann. of Math. (2), preprint, arXiv:1105.3128.

  42. S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps, Comm. Math. Phys. 269:2 (2007), 311–365.

    Google Scholar 

  43. S.J. Patterson, The limit set of a Fuchsian group, Acta Math. 136:1 (1976), 241–273.

    Google Scholar 

  44. S.J. Patterson and P.A. Perry, The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J. 106:2 (2001), 321–390.

    Google Scholar 

  45. A. Sá Barreto and M. Zworski, Distribution of resonances for spherical black holes, Math. Res. Lett. 4:1 (1997), 103–121.

  46. J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60:1 (1990), 1–57.

    Google Scholar 

  47. J. Sjöstrand, Lectures on resonances, lecture notes, http://math.u-bourgogne.fr/IMB/sjostrand/Coursgbg.pdf.

  48. J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137:3 (2007), 381–459.

    Google Scholar 

  49. Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Publ. IHES 50, 172–202 (1979)

    Google Scholar 

  50. D. Sullivan, Entropy, Hausdorff measures new and old and limit sets of geometrically finite Kleinian groups, Acta Math. 153:1 (1984), 259–277.

    Google Scholar 

  51. M.E. Taylor, Partial Differential Equations II. Qualitative studies of linear equations, Springer (1996).

  52. E.C. Titchmarsh, The theory of functions, second edition, Oxford University Press (1939).

  53. A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces,, to appear in Invent. Math., preprint, arXiv:1012.4391v2.

  54. A. Vasy, Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates, Inverse Problems and Applications, Inside Out II, Math. Sci. Res. Inst. Publ. 60 (2012), 487–538.

  55. A. Vasy and M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Comm. Math. Phys. 212:1 (2000), 205–217.

  56. S.V. Ng̣c, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses 22, (2006).

  57. J. Wunsch and M. Zworski, Distribution of resonances for asymptotically Euclidean manifolds, J. Diff. Geometry. 55:1 (2000), 43–82.

    Google Scholar 

  58. J. Wunsch and M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré, 12:7 (2011), 1349–1385.

    Google Scholar 

  59. M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, Invent. Math. 136:2 (1999), 353–409.

    Google Scholar 

  60. M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, AMS, (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiril Datchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datchev, K., Dyatlov, S. Fractal Weyl laws for asymptotically hyperbolic manifolds. Geom. Funct. Anal. 23, 1145–1206 (2013). https://doi.org/10.1007/s00039-013-0225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0225-8

Keywords

Navigation