Skip to main content
Log in

Gauged Floer Theory Of Toric Moment Fibers

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We investigate the small area limit of the gauged Lagrangian Floer cohomology of Frauenfelder [Fr1]. The resulting cohomology theory, which we call quasimap Floer cohomology, is an obstruction to displaceability of Lagrangians in the symplectic quotient. We use the theory to reproduce the results of Fukaya–Oh–Ohta–Ono [FuOOO3,1] and Cho–Oh [CO] on non-displaceability of moment fibers of not-necessarily-Fano toric varieties and extend their results to toric orbifolds, without using virtual fundamental chains. Finally, we describe a conjectural relationship with Floer cohomology in the quotient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, arXiv.org:0812.4781

  2. M. Abouzaid, A topological model for the Fukaya categories of plumbings, arXiv.org:0904.1474

  3. P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz Morphism and Two Comparison Homomorphisms in Floer Homology, Int. Math. Res. Not. IMRN (4) (2008).

  4. G. Alston, Lagrangian Floer homology of the Clifford torus and real projective space in odd dimensions, 2009; arXiv.org:0902.0197

  5. G. Alston, L. Amorim, Floer cohomology of torus fibers and real Lagrangians in Fano toric manifolds, arXiv:1003.3651

  6. D. Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, in “Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry”, Surv. Differ. Geom. 13, Int. Press, Somerville, MA (2009), 1–47.

  7. Auroux D., Katzarkov L., Orlov D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. Ann. of Math. (2) 167(3), 867–943 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Biran, O. Cornea, Quantum structures for Lagrangian submanifolds, arXiv:0708.4221

  9. J.M. Boardman, R.M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Springer Lect. Notes in Math. 347 (1973).

  10. L. Buhovsky, The Maslov class of Lagrangian tori and quantum products in Floer cohomology, arXiv:math/0608063

  11. Cho C.-H.: Products of Floer cohomology of torus fibers in toric Fano manifolds. Comm. Math. Phys. 260(3), 613–640 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho C.-H., Oh Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10(4), 773–814 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Cieliebak K., Rita Gaio A., Mundeti Riera I., Salamon D.A.: The symplectic vortex equations and invariants of Hamiltonian group actions. J. Symplectic Geom. 1(3), 543–645 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Entov M., Polterovich L.: Rigid subsets of symplectic manifolds. Compos. Math. 145(3), 773–826 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Floer A.: Morse theory for Lagrangian intersections. J. Differential Geom. 28(3), 513–547 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Floer A., Hofer H., Salamon D.: Transversality in elliptic Morse theory for the symplectic action. Duke Math. J. 80(1), 251–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. U. Frauenfelder, Floer homology of symplectic quotients and the Arnold– Givental conjecture, PhD Thesis, ETH Zurich, 2003.

  18. Frauenfelder U.: The Arnold–Givental conjecture and moment Floer homology. Int. Math. Res. Not. 42, 2179–2269 (2004)

    Article  MathSciNet  Google Scholar 

  19. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory on compact toric manifolds II : Bulk deformations (2008), arXiv.org:0810.5654

  20. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction, AMS/IP Studies in Advanced Mathematics 46, American Mathematical Society, Providence, RI (2009).

  21. Fukaya K., Oh Y.-G., Ohta H., Ono K.: Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151(1), 23–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rita Pires Gaio A., Salamon D.A.: Gromov–Witten invariants of symplectic quotients and adiabatic limits. J. Symplectic Geom. 3(1), 55–159 (2005)

    MathSciNet  Google Scholar 

  23. Givental A.B.: Equivariant Gromov–Witten invariants. Internat. Math. Res. Notices 13, 613–663 (1996)

    Article  MathSciNet  Google Scholar 

  24. E. Gonzalez, C. Woodward, Area-dependence in gauged Gromov–Witten theory, arXiv:0811.3358

  25. E. Gonzalez, C. Woodward, Gauged Gromov–Witten theory for small spheres, arXiv:0907.3869

  26. E. Gonzalez, C. Woodward, Deformations of symplectic vortices, Ann. of Global Anal. and Geom., to appear; arXiv:0811.3711

  27. V.W. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, Berlin, 1999; (with an appendix containing two reprints by H. Cartan [MR 13,107e; MR 13,107f].

  28. K. Hori, M. Herbst, D. Page, Phases of N=2 theories in 1 + 1 dimensions with boundary, arXiv:0803.2045v1

  29. K. Hori, C. Vafa, Mirror symmetry, hep-th/0002222

  30. L. Hörmander, The Analysis of Linear Partial Differential Operators, III. Springer-Verlag, Berlin, 1994. (Pseudo-differential operators, corrected reprint of the 1985 original).

  31. Katić J., Milinković D.: Coherent orientation of mixed moduli spaces in Morse-Floer theory. Bull. Braz. Math. Soc. (N.S.) 40(2), 253–300 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Kirwan F.C.: Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes 31. Princeton Univ. Press, Princeton (1984)

    Google Scholar 

  33. M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, in “Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ (2001), 203–263.

  34. E. Lerman, Y. Karshon, Non-compact toric manifolds, arXiv:0907.2891

  35. Lerman E., Tolman S.: Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Amer. Math. Soc. 349(10), 4201–4230 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lockhart R.B., McOwen R.C.: Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12(3), 409–447 (1985)

    MathSciNet  MATH  Google Scholar 

  37. S. Ma’u, Gluing pseudoholomorphic quilted disks, arxiv:0909.339

  38. Ma’u S., Woodward C.: Geometric realizations of the multiplihedron and its complexification. Compos. Math. 146, 1002–1028 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Mau, K. Wehrheim, C.T. Woodward, A-functors for Lagrangian correspondences, in preparation.

  40. D. McDuff, Displacing Lagrangian toric fibers via probes, arXiv:0904.1686

  41. D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society, Providence, RI (2004).

  42. Oh Y.-G.: Floer cohomology of Lagrangian intersections and pseudoholomorphic disks. I, Comm. Pure Appl. Math. 46(7), 949–993 (1993)

    Article  MATH  Google Scholar 

  43. Oh Y.-G.: Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings. Internat. Math. Res. Notices 7, 305–346 (1996)

    Article  Google Scholar 

  44. Pandharipande R., Solomon J., Walcher J.: Disk enumeration on the quintic 3-fold. J. Amer. Math. Soc. 21(4), 1169–1209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Piunikhin, D. Salamon, M. Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, in “Contact and Symplectic Geometry (Cambridge, 1994)”, Publ. Newton Inst. 8, Cambridge Univ. Press, Cambridge (1996), 171–200.

  46. M. Poźniak, Floer homology, Novikov rings and clean intersections, in “Northern California Symplectic Geometry Seminar”, Amer. Math. Soc. Transl. Ser. (2) 196, Amer. Math. Soc., Providence, RI (1999), 119–181.

  47. Royden H.L.: Real Analysis. The Macmillan Co., New York (1963)

    MATH  Google Scholar 

  48. Schwarz M.: Morse Homology, Progress in Math. 111. Birkhäuser Verlag, Basel (1993)

    Book  Google Scholar 

  49. P. Seidel, Fukaya categories and deformations, in “Proceedings of the International Congress of Mathematicians II (Beijing, 2002)”, Higher Ed. Press, Beijing (2002), 351–360.

  50. P. Seidel, Fukaya Categories and Picard–Lefschetz Theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.

  51. P. Seidel, Homological mirror symmetry for the genus two curve, arXiv:0812.1171

  52. Seidel P.: Suspending Lefschetz fibrations, with an application to mirror symmetry. Comm. Math. Phys. 297, 515–528 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Seidel P.: A-subalgebras and natural transformations, Homology. Homotopy Appl. 10(2), 83–114 (2008)

    MathSciNet  MATH  Google Scholar 

  54. J. Stasheff, H-Spaces from a Homotopy Point of View, Springer Lect. Notes in Math. 161 (1970).

  55. J. Wehrheim, Vortex invariants and toric manifolds, arXiv:0812.0299

  56. Wehrheim K., Woodward C.: Functoriality for Lagrangian correspondences in Floer theory. Quantum Topology 1, 129–170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. K. Wehrheim, C. Woodward, Pseudoholomorphic quilts, arXiv:0905.1369

  58. K. Wehrheim, C. Woodward, Orientations for pseudoholomorphic quilts, preprint (2009).

  59. Witten E.: Phases of N =  2 theories in two dimensions. Nuclear Phys. B 403(1-2), 159–222 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  60. C. Woodward, F. Ziltener, Functoriality for Gromov–Witten invariants under symplectic quotients, preprint (2008).

  61. Ziltener F.: The invariant symplectic action and decay for vortices. J. Symplectic Geom. 7(3), 357–376 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Woodward.

Additional information

Partially supported by NSF grant DMS0904358

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodward, C.T. Gauged Floer Theory Of Toric Moment Fibers. Geom. Funct. Anal. 21, 680–749 (2011). https://doi.org/10.1007/s00039-011-0119-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-011-0119-6

Keywords and phrases

2010 Mathematics Subject Classification

Navigation