Skip to main content
Log in

Cryptographic Hardness of Random Local Functions

Survey

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate level of parallelism, namely by local functions that each of their output bits depend on a constant number of input bits. A natural way to obtain local cryptographic constructions is to use random local functions in which each output bit is computed by applying some fixed d-ary predicate P to a randomly chosen d-size subset of the input bits.

In this work, we will study the cryptographic hardness of random local functions. In particular, we will survey known attacks and hardness results, discuss different flavors of hardness (one-wayness, pseudorandomness, collision resistance, public-key encryption), and mention applications to other problems in cryptography and computational complexity. We also present some open questions with the hope to develop a systematic study of the cryptographic hardness of local functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Dimitris Achlioptas (2009). Handbook of Satisfiability, chapter Random Satisfiability, 243–268. IOS Press.

  • Dimitris Achlioptas & Federico Ricci-Tersenghi (2006). On the solution-space geometry of random constraint satisfaction problems. In 38th Annual ACM Symposium on Theory of Computing, Jon M. Kleinberg, editor, 130–139. ACM Press, Seattle, Washington, USA.

  • Miklós Ajtai & Cynthia Dwork (1997). A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. In 29th Annual ACM Symposium on Theory of Computing, 284–293. ACM Press, El Paso, Texas, USA.

  • Michael Alekhnovich (2003). More on Average Case vs Approximation Complexity. In 44th Annual Symposium on Foundations of Computer Science, 298–307. IEEE Computer Society Press, Cambridge, Massachusetts, USA.

  • Michael Alekhnovich, Edward A. Hirsch & Dmitry Itsykson (2005). Exponential Lower Bounds for the Running Time of DPLL Algorithms on Satisfiable Formulas. J. Autom. Reasoning 35(1–3), 51–72.

  • Noga Alon & Nabil Kahale (1994). A Spectral Technique for Coloring Random 3-Colorable Graphs. SIAM J. Comput 346–355.

  • Applebaum Benny (2013) Pseudorandom generators with longstretch and low locality from random local one-way functions. SIAM J. Comput 42(5): 2008–2037

    Article  MathSciNet  MATH  Google Scholar 

  • Benny Applebaum, Boaz Barak & Avi Wigderson (2010). Public-key cryptography from different assumptions. In 42nd Annual ACM Symposium on Theory of Computing, Leonard J. Schulman, editor, 171–180. ACM Press, Cambridge, Massachusetts, USA.

  • Benny Applebaum, Andrej Bogdanov & Alon Rosen (2012). A Dichotomy for Local Small-Bias Generators. In TCC 2012: 9th Theory of Cryptography Conference, Ronald Cramer, editor, volume 7194 of Lecture Notes in Computer Science, 600–617. Springer, Berlin, Germany, Taormina, Sicily, Italy.

  • Benny Applebaum, Yuval Ishai & Eyal Kushilevitz (2005). On One-Way Functions with Optimal Locality. Unpublished manuscript available at http://www.eng.tau.ac.il/~bennyap.

  • Applebaum Benny, Ishai Yuval, Kushilevitz Eyal (2006a) Computationally Private Randomizing Polynomials and Their Applications. Computational Complexity 15(2): 115–162

    Article  MathSciNet  MATH  Google Scholar 

  • Benny Applebaum, Yuval Ishai & Eyal Kushilevitz (2006b). Cryptography in NC0. SIAM J. Comput 36(4), 845–888 Preliminary version in FOCS 2004.

  • Applebaum Benny, Ishai Yuval, Kushilevitz Eyal (2008) On Pseudorandom Generators with Linear Stretch in NC0. Computational Complexity 17(1): 38–69

    Article  MathSciNet  MATH  Google Scholar 

  • Benny Applebaum & Yoni Moses (2013). Locally Computable UOWHF with Linear Shrinkage. In Advances in Cryptology – EUROCRYPT 2013, Thomas Johansson & Phong Q. Nguyen, editors, volume 7881 of Lecture Notes in Computer Science, 486–502. Springer, Berlin, Germany, Athens, Greece.

  • Per Austrin & Elchanan Mossel (2009). Approximation Resistant Predicates from Pairwise Independence. Computational Complexity 18(2).

  • B. Barak, S. O. Chan & P. Kothari (2015). Sum of Squares Lower Bounds from Pairwise Independence. In 47th Annual ACM Symposium on Theory of Computing, Rocco A. Servedio & Ronitt Rubinfeld, editors, 97–106. ACM Press, Portland, OR, USA. Available at http://arxiv.org/abs/1501.00734.

  • Boaz Barak, Guy Kindler & David Steurer (2013). On the optimality of semidefinite relaxations for average-case and generalized constraint satisfaction. In ITCS 2013: 4th Innovations in Theoretical Computer Science, Robert D. Kleinberg, editor, 197–214. Association for Computing Machinery, Berkeley, CA, USA.

  • Ben-Sasson Eli, Wigderson Avi (2001) Short Proofs Are Narrow–Resolution Made Simple. J. ACM 48(2): 149–169

    Article  MathSciNet  MATH  Google Scholar 

  • Siavosh Benabbas, Konstantinos Georgiou, Avner Magen & Madhur Tulsiani (2012). SDP Gaps from Pairwise Independence. Theory of Computing 8(12), 269–289. http://www.theoryofcomputing.org/articles/v008a012.

  • Avrim L. Blum (1994). Relevant Examples and Relevant Features: Thoughts from Computational Learning Theory. In Proc. of AAAI Fall Symposium on Relevance, 14–18.

  • Blum Avrim L., Langley Pat (1997) Selection of relevant features and examples in machine learning. Artificial Intelligence 97(1-2): 245–271

    Article  MathSciNet  MATH  Google Scholar 

  • Andrej Bogdanov, Periklis A. Papakonstantinou & Andrew Wan (2011). Pseudorandomness for Read-Once Formulas. In 52nd Annual Symposium on Foundations of Computer Science, Rafail Ostrovsky, editor, 240–246. IEEE Computer Society Press, Palm Springs, California, USA.

  • Bogdanov Andrej, Qiao Youming (2012) On the security of Goldreich’s one-way function. Computational Complexity 21(1): 83–127

    Article  MathSciNet  MATH  Google Scholar 

  • Andrej Bogdanov & Alon Rosen (2011). Input Locality and Hardness Amplification. In TCC 2011: 8th Theory of Cryptography Conference, Yuval Ishai, editor, volume 6597 of Lecture Notes in Computer Science, 1–18. Springer, Berlin, Germany, Providence, RI, USA.

  • Bogdanov Andrej, Viola Emanuele (2010) Pseudorandom Bits for Polynomials. SIAM J. Comput 39(6): 2464–2486

    Article  MathSciNet  MATH  Google Scholar 

  • Mark Braverman (2010). Polylogarithmic independence fools AC 0 circuits. J. ACM 57(5).

  • Moses Charikar, Anthony Wirth (2004). Maximizing Quadratic Programs: Extending Grothendieck’s Inequality. In 45th Annual Symposium on Foundations of Computer Science, 54–60. IEEE Computer Society Press, Rome, Italy.

  • Amin Coja-Oghlan (2009). Random Constraint Satisfaction Problems. In Proceedings Fifth Workshop on Developments in Computational Models–Computational Models From Nature, DCM 2009, Rhodes, Greece, 11th July 2009., 32–37.

  • Cook James, Etesami Omid, Miller Rachel, Trevisan Luca (2014) On the One-Way Function Candidate Proposed by Goldreich. ACM Transactions on Computation Theory 6(3): 14–11435

    Article  MathSciNet  Google Scholar 

  • Mary Cryan & Peter Bro Miltersen (2001). On Pseudorandom Generators in NC. In Proc. of 26th Mathematical Foundations of Computer Science (MFCS), 272–284.

  • Diakonikolas Ilias, Gopalan Parikshit, Jaiswal Ragesh, Servedio Rocco A., Viola Emanuele (2010) Bounded Independence Fools Halfspaces. SIAM J. Comput 39(8): 3441–3462

    Article  MathSciNet  MATH  Google Scholar 

  • Ilias Diakonikolas, Daniel M. Kane & Jelani Nelson (2010b). Bounded Independence Fools Degree-2 Threshold Functions. In 51st Annual Symposium on Foundations of Computer Science, 11–20. IEEE Computer Society Press, Las Vegas, Nevada, USA.

  • Diffie W., Hellman M. E. (1976) New Directions in Cryptography. IEEE Transactions on Information Theory 22(5): 644–654

    Article  MathSciNet  MATH  Google Scholar 

  • Uriel Feige (2002). Relations between average case complexity and approximation complexity. In 34th Annual ACM Symposium on Theory of Computing, 534–543. ACM Press, Montréal, Québec, Canada.

  • Uriel Feige, Jeong Han Kim & Eran Ofek (2006). Witnesses for non-satisfiability of dense random 3CNF formulas. In 47th Annual Symposium on Foundations of Computer Science, 497–508. IEEE Computer Society Press, Berkeley, CA, USA.

  • Vitaly Feldman, Will Perkins & Santosh Vempala (2015). On the Complexity of Random Satisfiability Problems with Planted Solutions. In 47th Annual ACM Symposium on Theory of Computing, Rocco A. Servedio & Ronitt Rubinfeld, editors, 77–86. ACM Press, Portland, OR, USA.

  • Abraham Flaxman (2008a). Random Planted 3-SAT. In Encyclopedia of Algorithms, Ming-Yang Kao, editor. Springer. ISBN 978-0-387-30162-4. http://dx.doi.org/10.1007/978-0-387-30162-4_330.

  • Flaxman Abraham (2008) A spectral technique for random satisfiable 3CNF formulas. Random Struct. Algorithms 32(4): 519–534

    Article  MathSciNet  MATH  Google Scholar 

  • Goemans Michel X., Williamson David P. (1995) Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM 42(6): 1115–1145

    Article  MathSciNet  MATH  Google Scholar 

  • Oded Goldreich (2000). Candidate One-Way Functions Based on Expander Graphs. Electronic Colloquium on Computational Complexity (ECCC) 7(090). http://citeseer.nj.nec.com/382413.html.

  • Oded Goldreich (2001). Foundations of Cryptography: Basic Tools. Cambridge University Press. ISBN 0521791723.

  • Oded Goldreich (2004). Foundations of Cryptography: Basic Applications. Cambridge University Press. ISBN 0521791723.

  • Oded Goldreich, Silvio Micali & Avi Wigderson (1987). How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In 19th Annual ACM Symposium on Theory of Computing, Alfred Aho, editor, 218–229. ACM Press, New York City, New York, USA. See (Goldreich 2004, Chapter 7).

  • Håstad Johan (2008) Every 2-CSP Allows Nontrivial Approximation. Computational Complexity 17(4): 549–566

    Article  MathSciNet  MATH  Google Scholar 

  • Russell Impagliazzo, Noam Nisan & Avi Wigderson (1994). Pseudorandomness for network algorithms. In 26th Annual ACM Symposium on Theory of Computing, 356–364. ACM Press, Montréal, Québec, Canada.

  • Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai & David Zuckerman (2013). Robust Pseudorandom Generators. In ICALP 2013: 40th International Colloquium on Automata, Languages and Programming, Part I, Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska & David Peleg, editors, volume 7965 of Lecture Notes in Computer Science, 576–588. Springer, Berlin, Germany, Riga, Latvia.

  • Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky & Amit Sahai (2008). Cryptography with constant computational overhead. In 40th Annual ACM Symposium on Theory of Computing, Richard E. Ladner & Cynthia Dwork, editors, 433–442. ACM Press, Victoria, British Columbia, Canada.

  • Dmitry Itsykson (2010). Lower bound on average-case complexity of inversion of Goldreich’s function by drunken backtracking algorithms. In Computer Science - Theory and Applications, 5th International Computer Science Symposium in Russia, 204–215.

  • Kearns Michael J., Valiant Leslie G. (1994) Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. J. ACM 41(1): 67–95

    Article  MathSciNet  MATH  Google Scholar 

  • Subhash Khot (2002). On the power of unique 2-prover 1-round games. In 34th Annual ACM Symposium on Theory of Computing, 767–775. ACM Press, Montréal, Québec, Canada.

  • Subhash Khot (2004). Ruling Out PTAS for Graph Min-Bisection, Densest Subgraph and Bipartite Clique. In 45th Annual Symposium on Foundations of Computer Science, 136–145. IEEE Computer Society Press, Rome, Italy.

  • Lovett Shachar (2009) Unconditional Pseudorandom Generators for Low Degree Polynomials. Theory of Computing 5(1): 69–82

    Article  MathSciNet  MATH  Google Scholar 

  • R. J. McEliece (1978). A Public-Key Cryptosystem Based On Algebraic Coding Theory. The Deep Space Network Progress Report, DSN PR 42–44, January and February 1978.

  • Elchanan Mossel, Amir Shpilka & Luca Trevisan (2003). On e-Biased Generators in NC0. In 44th Annual Symposium on Foundations of Computer Science, 136–145. IEEE Computer Society Press, Cambridge, Massachusetts, USA.

  • Joseph Naor & Moni Naor (1993). Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput 22(4), 838–856. Preliminary version in Proc. 22th STOC, 1990.

  • Moni Naor & Moti Yung (1989). Universal One-Way Hash Functions and their Cryptographic Applications. In 21st Annual ACM Symposium on Theory of Computing, 33–43. ACM Press, Seattle, Washington, USA.

  • Ryan O’Donnell & David Witmer (2014). Goldreich’s PRG: Evidence for Near-Optimal Polynomial Stretch. In Proc. of IEEE 29th Conference on Computational Complexity, 1–12.

  • M. Rabin (1981). How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory.

  • Rivest Ronald L., Adi Shamir, Adleman Leonard M. (1978) A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Comm. of the ACM 21(2): 120–126

    Article  MathSciNet  MATH  Google Scholar 

  • Siegenthaler T. (1984) Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory IT-30(5): 776–779

    Article  MathSciNet  MATH  Google Scholar 

  • Madhur Tulsiani & Pratik Worah (2013). LS+ Lower Bounds from Pairwise Independence. In Proc. of IEEE 28th Conference on Computational Complexity, 121–132.

  • Viola Emanuele (2009) The Sum of D Small-Bias Generators Fools Polynomials of Degree D. Computational Complexity 18(2): 209–217

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Applebaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Applebaum, B. Cryptographic Hardness of Random Local Functions. comput. complex. 25, 667–722 (2016). https://doi.org/10.1007/s00037-015-0121-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-015-0121-8

Keywords

Subject Classification

Navigation