Skip to main content
Log in

Coldest places on earth with angiosperm plant life

  • Original Paper
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

The highest elevation flowering plant ever recorded in Europe, a lush moss flora, one of the coldest places of permanent animal life (collembola, mites) and indications of mycorrhizal fungi were evidenced for the Dom summit (4,545 m, central Swiss Alps) between solid siliceous rock at 4,505–4,543 m, 46° N. Cushions of Saxifraga oppositifolia were found at 4,505 to 4,507 m a.s.l. A large individual (possibly >30 years old) was in full bloom on 12 August 2009. The 14C-dated oldest debris of the biggest moss, Tortula ruralis, suggests a 13 year litter turnover. The thermal conditions at this outpost of plant life were assessed with a miniature data logger. The 2008/09 growing season had 66 days with a daily mean rooting zone temperature >0 °C in this high elevation micro-habitat (2–3 cm below ground). The degree hours >0 °C during this period summed up to 4,277 °h corresponding to 178 °d (degree days), the absolute winter minimum was −20.9 °C and the absolute summer maximum 18.1 °C. The mean temperature for the growing period was +2.6 °C. All plant parts, including roots, experience temperatures below 0 °C every night, even during the warmest part of the year. On clear summer days, plants may be physiologically active for several hours, and minimum night temperatures are clearly above the freezing tolerance of Saxifraga oppositifolia in the active state. In comparison with climate data for other extreme plant habitats in the Alps, Himalayas, in the Arctic and Antarctic, these data illustrate the life conditions at what is possibly the coldest place for angiosperm plant life on earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Uria P, Körner Ch (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–218

    Article  Google Scholar 

  • Anchisi E (1985) Quatrieme contribution a l’etude de la flore valaisanne. Bull Murithienne 102:115–126

    Google Scholar 

  • Bay C (1992) A phytogeographical study of the vascular plants of Northern Greenland–north of 74° north. Meddelelser Grönland Biosci 35:102

    Google Scholar 

  • Beniston M (2004) Climatic change and its impacts: an overview focusing on Switzerland. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Eisenbeis G, Meyer E (1999) Ecophysiological and morphological features of glacier-dwelling collembola. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Springer, Berlin, pp 197–218

    Google Scholar 

  • Gornall JL, Jónsdóttir IS, Woodin SJ, Van der Wal R (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–941

    Article  PubMed  CAS  Google Scholar 

  • Gugerli F (1998) Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114:60–66

    Article  Google Scholar 

  • Hoch G, Körner Ch (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951

    Article  Google Scholar 

  • Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Klimeš L, Doležal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography. doi:10.1111/j.1600-0587.2009.05967.x

  • Kol E (1935) Kryobiologische Studien am Jungfraujoch (3470 m) und in dessen Umgebung. Beih Bot Centralbl (Dresden) 53(Abt A):34–49

    Google Scholar 

  • Kopeszki H (2000) Auf der Suche nach roten Gletscherflöhen–Funde hochalpiner Springschwänze (Collembola). Vorarlberger Naturschau 8:133–144

    Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2008) Winter crop growth at low temperature may hold the answer for alpine treeline formation. Plant Ecol Divers 1:3–11

    Article  Google Scholar 

  • Körner C, De Moraes JAPV (1979) Water potential and diffusion resistance in alpine cushion plants on clear summerdays. Oecol Plant 14:109–120

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40

    Article  Google Scholar 

  • Körner C, Paulsen J, Pelaez-Riedl S (2003) A bioclimatic characterisation of Europe’s alpine areas. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe. Ecol studies, vol 167. Springer, Berlin, pp 13–28

  • Ladinig U, Wagner J (2005) Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora 200:502–515

    Google Scholar 

  • Larcher W (1985) Frostresistenz. In: Sorauer P (founded) Handbuch der Pflanzenkrankheiten (Parey, Berlin), vol 1 part 5, 7edn. Parey, Berlin, pp 177–259

  • Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374

    Google Scholar 

  • Larcher W, Wagner J (2009) High mountain bioclimate: temperatures near the ground recorded from timberline to the nival zone in the Central Alps. Contr Nat Hist (Bern) 12:857–874

    Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Google Scholar 

  • Leya T (2004) Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. Shaker, Achen

    Google Scholar 

  • Mahringer W (1964) Untersuchungen von Boden- und Felstemperaturen auf dem Hohen Sonnblick (3100 m). Jahresber Sonnblick-Verein 60–62:17–31

    Google Scholar 

  • Maier E, Geissler P (1997) Moose der nivalen Stufe - oder von Höhenrekorden bei Moosen. Meylania 13:14–16

    Google Scholar 

  • Mathys H (1974) Klimatische Aspekte zur Frostverwitterung in der Hochgebirgsregion. Mitt Naturf Ges Bern Neue Folge 31:49–62

    Google Scholar 

  • Miehe G, Miehe S, Vogel J, Co S, Duo L (2007) Highest treeline in the northern hemisphere found in southern Tibet. Mt Res Dev 27:169–173

    Article  Google Scholar 

  • Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arctic Alp Res 25:391–402

    Article  Google Scholar 

  • Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794

    Article  CAS  Google Scholar 

  • Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135:30–38

    PubMed  Google Scholar 

  • Pitschmann H, Reisigl H (1954) Zur nivalen Moosflora der Ötztaler Alpen (Tirol). Rev Bryol Lichénol 23:123–131

    Google Scholar 

  • Scherrer D, Körner C (2010a) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biol. doi: 10.1111/j.1365-2486.2009.02122.x

  • Scherrer D, Körner C (2010b) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. doi:10.1111/j.1365-2699.2010.02407.x

  • Schinner F (1982) Freisetzung, Enzymaktivität und Bakteriengehalt von Boden unter Spaliersträuchern und Polsterpflanzen in der alpinen Stufe. Acta Oecol Oecol Plantarum 3:49–58

    CAS  Google Scholar 

  • Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2010) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77° S latitude, continental Antarctica. Polar Biol. doi:10.1007/s00300-010-0851-7

  • Smith RIL (1987) Deschampsia antarctica and Colobathus quitensis in the Terra Firma Islands. British Antarct Surv Bull 74:31–35

    Google Scholar 

  • Smith RIL (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–328

    Article  Google Scholar 

  • Sunding P (1962) Høydegrenser for høyere planter på Svalbard (Height limits for vascular plants in Svalbard). In: Årbok of the Norsk Polarinstitutt 1960, Oslo

  • Vaccari L (1914) La sopraelevanzione dei limiti superiori dei muschi in valle d’aosta. Société de la Flore Valdotaine 9:62–84

    Google Scholar 

  • Wagner J, Tengg G (1993) Phaenoembryologie der Hochgebirgspflanzen Saxifraga oppositifolia und Cerastium uniflorum. Flora 188:203–212

    Google Scholar 

  • Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma 243:117–128

    Article  PubMed  Google Scholar 

  • Wagner J, Ladinig U, Steinacher G, Larl I (in press) From the flower bud to the mature seed: timing and dynamics of flower and seed development in high-mountain plants. In: Lütz C (ed) Plants in alpine regions: cell physiology of adaption and survival strategies. Springer, Vienna

  • Wegmann M (1998) Frostdynamik in hochalpinen Felswänden am Beispiel der Region Jungfraujoch – Aletsch. Mitt Versuchsanst Wasserbau, Hydrologie und Glaziologie (VAW) ETH Zürich 161

  • Werner P (1988) La Flore. Editions Pillet, Martigny

    Google Scholar 

  • Winkler E (1953) Beiträge zur Klimatologie hochalpiner Lagen der Zentralalpen. Ber Naturw Med Verein Innsbruck 53:209–223

    Google Scholar 

  • Wise KAJ, Gressitt JL (1965) Far southern animals and plants. Nature 4992:101–102

    Article  Google Scholar 

  • Zhu Y, Siegwolf R, Durka W, Körner C (2009) Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162:853–863

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Jürg Anderegg for guiding me to the Dom summit in 2008 and collecting the logger and samples in 2009, Ulrike and Roman Hörler for teaming up during the 2008 climb, David Preiswerk for searching for the second summit logger in 2010 and recovering the loggers from 3,060 m elevation, and Inger Alsos for recovering the Svalbard logger. I thank the Jungfraujoch High Altitude Research Station for permission and assistance during the 2010 logging campaign. The taxonomic expertise by Erwin Urmi (University of Zürich; mosses), by Hans-Jürgen Schulz (collembola) and Axel Christian (mite; both Senckenberg Museum, Görlitz, Germany) and Fritz Oehl (Agroscope Reckenholz-Tänikon Research Station, Zürich; soil fungi) is gratefully acknowledged. Scanning electron micrographs have kindly been provided by the Center for Electron Microscopy of the University of Basel (Daniel Mathys), light microscope images were provided by Fritz Oehl (fungi, seeds) and Ulrich Burckhardt (collembola). Thanks to the isotope lab (Rolf Siegwolf) at the Paul Scherrer Institute, Villigen, Switzerland, for 13C measurements, and the Laboratory for Ion Beam Physics (Irka Hajdas and Lukas Wacker), Swiss Federal Institute of Technology, Zürich for 14C dating of moss debris, to Susanna Riedl for helping with sample handling, diagrams and literature, Urs Weber for taking the Saxifraga macro-photographs of fresh samples and work on the manuscript, Maria Brassel for providing photographs 2a, b, Jens Paulsen for processing the climate data. Thanks also to Inger Alsos, Georg Armbruster, Burkhard Büdel, Allan Green, Otto Hegg, Heiner Lenzin, Bruno Messerli, Volker Storch and Johanna Wagner for advice during preparation of the manuscript. Jiří Doležal provided the original climate data from the Himalaya survey (for additional analysis) that he published with the late Leoš Klimeš. Erika Hiltbrunner, Jürg Stöcklin and two anonymous referees helped improving the manuscript. Thanks to all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körner, C. Coldest places on earth with angiosperm plant life. Alp Botany 121, 11–22 (2011). https://doi.org/10.1007/s00035-011-0089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-011-0089-1

Keywords

Navigation