Skip to main content
Log in

Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This brief presents the principle and the first experimental results of the multiple-input bulk-driven (MIBD) MOS transistor (MOST) suitable for extremely low-voltage low-power integrated circuits. The MIBD MOST offers significant reduction in circuit complexity, power consumption and extension of the input common-mode range (ICMR). To confirm the benefits of the MIBD MOST, a differential difference amplifier (DDA) with very simple CMOS topology has been designed and fabricated in a standard n-well 0.18 µm CMOS process from TSMC with total chip area 226 µm × 78 µm. The DDA is supplied with 0.5 V and consumed only 1.23 µW, while the ICMR is rail-to-rail. The measured open-loop dc gain is 62 dB, the gain bandwidth product is 56.4 kHz, and the total harmonic distortion is 0.2% @ 1 kHz for 400 mV peak-to-peak input sine wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Chatterjee, Y. Tsividis, P. Kinget, 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid-State Circuits 40, 2373–2387 (2005)

    Article  Google Scholar 

  2. M. Guermandi, R. Cardu, E.F. Scarselli, R. Guerrieri, Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance. IEEE Trans. Biomed. Circuits Syst. 9, 21–33 (2015)

    Article  Google Scholar 

  3. M. Gupta, R. Pandey, Low-voltage FGMOS based analog building blocks. Microelectron. J. 42, 903–912 (2011)

    Article  Google Scholar 

  4. M. Gupta, R. Pandey, FGMOS based voltage-controlled resistor and its applications. Microelectron. J. 41, 25–32 (2010)

    Article  Google Scholar 

  5. F. Khateb, The experimental results of the bulk-driven quasi-floating-gate MOS transistor. AEU Electron. Commun. J. 69, 462–466 (2015)

    Article  Google Scholar 

  6. F. Khateb, Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design. AEU Electron. Commun. J. 68, 64–72 (2014)

    Article  Google Scholar 

  7. F. Khateb, S.A.B. Dabbous, S. Vlassis, A survey of non-conventional techniques for low-voltage, low-power analog circuits design. Radioengineering 22, 415–427 (2013)

    Google Scholar 

  8. F. Khateb, W. Jaikla, M. Kumngern, P. Prommee, Comparative study of sub-volt differential difference current conveyors. Microelectron. J. 44, 1278–1284 (2013)

    Article  Google Scholar 

  9. F. Khateb, N. Khatib, J. Koton, Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA. Microelectron. J. 42, 1010–1017 (2011)

    Article  Google Scholar 

  10. F. Khateb, D. Kubánek, G. Tsirimokou, C. Psychalinos, Fractional-order filters based on low-voltage DDCCs. Microelectron. J. 50, 50–59 (2016)

    Article  Google Scholar 

  11. F. Khateb, T. Kulej, Design and implementation of a 0.3-V differential difference amplifier. IEEE Trans. Circuits Syst. I-Regular Papers (2018). https://doi.org/10.1109/tcsi.2018.2866179

    Google Scholar 

  12. F. Khateb, T. Kulej, M. Akbari, P. Šteffan, 0.3-V bulk-driven nanopower OTA-C integrator in 0.18 µm CMOS. Circuits Syst. Signal Process. 1, 2 (2018). https://doi.org/10.1007/s00034-018-0901-x

    Google Scholar 

  13. F. Khateb, M. Kumngern, T. Kulej, 1-V inverting and non-inverting loser-take-all circuit and its applications. Circuits Syst. Signal Process. 35, 1507–1529 (2016)

    Article  Google Scholar 

  14. F. Khateb, M. Kumngern, T. Kulej, V. Kledrowetz, Low-voltage fully differential difference transconductance amplifier. IET Circuits Devices Syst. 12, 73–81 (2018)

    Article  Google Scholar 

  15. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, Differential difference current conveyor using bulk-driven technique for ultra-low-voltage applications. Circuits Syst. Signal Process. 33, 159–176 (2014)

    Article  Google Scholar 

  16. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, T. Kulej, Sub-volt fully balanced differential difference amplifier. Circuits Syst. Comput. J. 24, 1550005–1/18 (2015)

    Article  Google Scholar 

  17. F. Khateb, A. Lahiri, C. Psychalinos, M. Kumngern, T. Kulej, Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor. AEU – Int. J. Electron. Commun. 69, 1010–1017 (2015)

    Article  Google Scholar 

  18. F. Khateb, S. Vlassis, Low-voltage bulk-driven rectifier for biomedical applications. Microelectron. J. 44, 642–648 (2013)

    Article  Google Scholar 

  19. F. Khateb, S. Vlassis, M. Kumngern, C. Psychalinos, T. Kulej, R. Vrba, L. Fujcik, 1 V rectifier based on bulk-driven quasi-floating-gate differential difference amplifiers. Circuits Syst. Signal Process. 34, 2077–2089 (2015)

    Article  Google Scholar 

  20. D. Kubánek, F. Khateb, G. Tsirimokou, C. Psychalinos, Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors. Circuits Syst. Signal Process. 35, 2003–2016 (2016)

    Article  MathSciNet  Google Scholar 

  21. T. Kulej, 0.4-V bulk-driven operational amplifier with improved input stage. Circuits Syst. Signal Process. 34, 1167–1185 (2015)

    Article  MathSciNet  Google Scholar 

  22. T. Kulej, F. Khateb, Bulk-driven adaptively biased OTA in 0.18 μm CMOS. Electron. Lett. 51, 458–460 (2015)

    Article  Google Scholar 

  23. T. Kulej, F. Khateb, 0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 46, 362–369 (2015)

    Article  Google Scholar 

  24. T. Kulej, F. Khateb, Design and implementation of sub 0.5-V OTAs in 0.18 µm CMOS. Int. J. Circuit Theory Appl. 46, 1129–1143 (2018)

    Article  Google Scholar 

  25. M. Kumngern, F. Khateb, Fully differential difference transconductance amplifier using FG-MOS transistors, in International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) (2015), pp. 337–341

  26. M. Kumngern, F. Khateb, K. Dejhan, P. Phasukkit, S. Tungjitkusolmun, Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors. Radioengineering 22, 448–457 (2013)

    Google Scholar 

  27. A.J. Lopez-Martin, J.R. Angulo, R.G. Carvajal, L. Acosta, Micropower high current-drive class AB CMOS current-feedback operational amplifier. Int. J. Circuit Theory Appl. 39, 893–903 (2010)

    Article  Google Scholar 

  28. A. Lopez-Martin, J.R. Angulo, R.G. Carvajal, J. Algueta, Compact class AB CMOS current mirror. Electron. Lett. 44, 1335–1336 (2008)

    Article  Google Scholar 

  29. A.J. Lopez-Martin, L. Acosta, C.G. Alberdi, R.G. Carvajal, J.R. Angulo, Power-efficient analog design based on the class AB super source follower. Int. J. Circuit Theory Appl. 40, 1143–1163 (2012)

    Article  Google Scholar 

  30. A.J. Lopez Martin, A. Carlosena, J. Ramirez-Angulo, Very low voltage MOS translinear loops based on flipped voltage followers. Analog Integr. Circuits Signal Process. 40, 71–74 (2004)

    Article  Google Scholar 

  31. M. Madhushankara, P. Kumar Shetty, Floating gate wilson current mirror for low power applications. Commun. Comput. Inf. Sci. 197, 500–507 (2011)

    Google Scholar 

  32. P. Monsurrò, S. Pennisi, G. Scotti, A. Trifiletti, Exploiting the body of MOS devices for high performance analog design. IEEE Circuits Syst. Mag. 11, 8–23 (2011)

    Article  Google Scholar 

  33. G.T. Ong, P.K. Chan, A micropower gate-bulk driven differential difference amplifier with folded telescopic cascode topology for sensor applications, in Proceedings of the Midwest Symposium on Circuits and Systems (MWSCAS) (2010), pp. 193–196

  34. G. Raikos, S. Vlassis, 0.8 V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 63, 425–432 (2010)

    Article  Google Scholar 

  35. G. Raikos, S. Vlassis, C. Psychalinos, 0.5 V bulk-driven analog building blocks. AEÜ Int. J. Electron. Commun. J. 66, 920–927 (2012)

    Article  Google Scholar 

  36. N. Raj, A.K. Singh, A.K. Gupta, Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement. Electron. Lett. 50, 23–25 (2014)

    Article  Google Scholar 

  37. E. Sackinger, W. Guggenbuhl, A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid-State Circuits SC-22, 287–294 (1987)

    Article  Google Scholar 

  38. S. Vlassis, F. Khateb, Automatic tuning circuit for bulk-controlled sub-threshold MOS resistor. Electron. Lett. 50, 432–434 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Research described in this paper was financed by the Czech Science Foundation under Grant No. P102-15-21942S and by the National Sustainability Program under Grant LO1401. For the research, infrastructure of the SIX Center was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Khateb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khateb, F., Kulej, T., Kumngern, M. et al. Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits Syst Signal Process 38, 2829–2845 (2019). https://doi.org/10.1007/s00034-018-0999-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0999-x

Keywords

Navigation