Skip to main content
Log in

Aitken-Based Stochastic Gradient Algorithm for ARX Models with Time Delay

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes an Aitken-based stochastic gradient algorithm for ARX models with time delay. By using the redundant rule, the ARX model can be transformed into an augmented model. Based on the Aitken method, the parameters of the augmented model can be estimated, and then, the unknown parameters of the ARX model and the time delay can be computed. The performance of the Aitken-based stochastic gradient algorithm is then analyzed. Furthermore, a numerical example and a real system example are provided to show the effectiveness of the proposed algorithm. Compared with the traditional stochastic gradient algorithm, the Aitken-based stochastic gradient algorithm achieves better convergence performance that the parameter estimation errors converge below 3% in both examples after 400 steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.S. Ali, J. Yogambigai, Synchronization of complex dynamical networks with hybrid coupling delays on time scales by handling multitude Kronecker product terms. Appl. Math. Comput. 291, 244–258 (2016)

    MathSciNet  MATH  Google Scholar 

  2. O. Bumbariu, A new Aitken type method for accelerating iterative sequences. Appl. Math. Comput. 219(1), 78–82 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Y. Cao, P. Li, Y. Zhang, Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing. Future Gener. Comput. Syst. 88, 279–283 (2018)

    Article  Google Scholar 

  4. Y. Cao, L.C. Ma, S. Xiao et al., Standard analysis for transfer delay in CTCS-3. Chin. J. Electron. 26(5), 1057–1063 (2017)

    Article  Google Scholar 

  5. Y. Cao, Y. Wen, X. Meng, W. Xu, Performance evaluation with improved receiver design for asynchronous coordinated multipoint transmissions. Chin. J. Electron. 25(2), 372–378 (2016)

    Article  Google Scholar 

  6. J. Chen, F. Ding, Modified stochastic gradient algorithms with fast convergence rates. J. Vib. Control 17(9), 1281–1286 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Chen, F. Ding, Y.J. Liu, Q.M. Zhu, Multi-step-length gradient iterative algorithm for equation-error type models. Syst. Control Lett. 115, 15–21 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Chen, B. Huang et al., Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica 94, 194–204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Chen, J.X. Ma, Y.J. Liu et al., Identification methods for time-delay systems based on the redundant rule. Signal Process. 137, 192–198 (2017)

    Article  Google Scholar 

  10. M.Z. Chen, D.Q. Zhu, A workload balanced algorithm for task assignment and path planning of inhomogeneous autonomous underwater vehicle system. IEEE Trans. Cogn. Dev. Syst. (2018). https://doi.org/10.1109/TCDS.2018.2866984

  11. J.L. Ding, Recursive and iterative least squares parameter estimation algorithms for multiple-input–output–error systems with autoregressive noise. Circuits Syst. Signal Process. 37(5), 1884–1906 (2018)

    Article  MathSciNet  Google Scholar 

  12. J.L. Ding, The hierarchical iterative identification algorithm for multi-input–output–error systems with autoregressive noise. Complexity. Article ID 5292894, 1–11 (2017). https://doi.org/10.1155/2017/5292894

  13. F. Ding, X.H. Wang, Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems. Circuits Syst. Signal Process. 36(4), 1393–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. F.Z. Geng, S.P. Qian, An optimal reproducing kernel method for linear nonlocal boundary value problems. Appl. Math. Lett. 77, 49–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.C. Gong, W.Q. Wang, F.C. Li, H. Cheung, Sparsity-aware transmit beamspace design for FDA-MIMO radar. Signal Process. 144, 99–103 (2018)

    Article  Google Scholar 

  16. Y. Gu, F. Ding, J.H. Li, States based iterative parameter estimation for a state space model with multi-state delays using decomposition. Signal Process. 106, 294–300 (2015)

    Article  Google Scholar 

  17. Y. Guo, B. Huang, State estimation incorporating infrequent, delayed and integral measurements. Automatica 58, 32–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Guo, Y.L. Zhao, C.Y. Sun, Y. Yu, Recursive identification of FIR systems with binary-valued outputs and communication channels. Automatica 60, 165–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.N. Li, W.D. Bao, S.B. Li, L.S. Li, Exponential synchronization of discrete-time mixed delay neural networks with actuator constraints and stochastic missing data. Neurocomputing 207, 700–707 (2016)

    Article  Google Scholar 

  20. J.N. Li, L.S. Li, Mean-square exponential stability for stochastic discrete-time recurrent neural networks with mixed time delays. Neurocomputing 151, 790–797 (2015)

    Article  Google Scholar 

  21. M.H. Li, X.M. Liu, The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 147, 23–34 (2018)

    Article  Google Scholar 

  22. X.Y. Li, B.Y. Wu, A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl. Math. Lett. 86, 194–199 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.N. Li, Y. Zhang, Y.J. Pan, Mean-square exponential stability and stabilisation of stochastic singular systems with multiple time-varying delays. Circuits Syst. Signal Process. 34(4), 1187–1210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Li, D.Q. Zhu, An improved SOM neural network method to adaptive leader-follower formation control of AUVs. IEEE Trans. Ind. Electron. 65(10), 8260–8270 (2018)

    Google Scholar 

  25. F. Liu, A note on Marcinkiewicz integrals associated to surfaces of revolution. J. Aust. Math. Soc. 104(3), 380–402 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Liu, E.W. Bai, Iterative identification of Hammerstein systems. Automatica 43(2), 346–354 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Liu, H.X. Wu, A note on the endpoint regularity of the discrete maximal operator. Proc. Amer. Math. Soc. 147(2), 583–596 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Liu, H.X. Wu, Singular integrals related to homogeneous mappings in Triebel–Lizorkin spaces. J. Math. Inequal. 11(4), 1075–1097 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Pan, X. Jiang, X. Wan, W. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 15(3), 1189–1197 (2017)

    Article  Google Scholar 

  30. J. Pan, W. Li, H.P. Zhang, Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control. Int. J. Control Autom. Syst. 16(6), 2878–2887 (2018)

    Article  Google Scholar 

  31. J. Pan, H. Ma, X. Jiang, et al., Adaptive gradient-based iterative algorithm for multivariate controlled autoregressive moving average systems using the data filtering technique. Complexity. Article ID 9598307 (2018). https://doi.org/10.1155/2018/9598307

  32. I. Pavaloiu, E. Catina, On a robust Aitken–Newton method based on the Hermite polynomial. Appl. Math. Comput. 287–288, 224–231 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Z.H. Rao, C.Y. Zeng, M.H. Wu et al., Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network. KSII Trans. Internet Inf. Syst. 12(1), 413–435 (2018)

    Google Scholar 

  34. C. Wang, T. Tang, Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems. Appl. Math. Lett. 29, 36–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Xu, The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1–12 (2017). https://doi.org/10.1177/1687814017730003

    Article  Google Scholar 

  36. L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)

    Article  MATH  Google Scholar 

  37. L. Xu, F. Ding, Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018)

    Article  MathSciNet  Google Scholar 

  38. L. Xu, F. Ding, Parameter estimation for control systems based on impulse responses. Int. J. Control Autom. Syst. 15(6), 2471–2479 (2017)

    Article  Google Scholar 

  39. L. Xu, F. Ding, The parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle. IET Signal Process. 11(2), 228–237 (2017)

    Article  Google Scholar 

  40. L. Xu, F. Ding, Y. Gu et al., A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay. Signal Process. 140, 97–103 (2017)

    Article  Google Scholar 

  41. G.H. Xu, Y. Shekofteh, A. Akgul, C.B. Li, S. Panahi, A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation. Entropy 20(2), Article Number 86 (2018). https://doi.org/10.3390/e20020086

  42. L. Xu, W.L. Xiong et al., Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. 16(4), 1756–1764 (2018)

    Article  Google Scholar 

  43. Y.Z. Zhang, Y. Cao, Y.H. Wen, L. Liang, F. Zou, Optimization of information interaction protocols in cooperative vehicle-infrastructure systems. Chin. J. Electron. 27(2), 439–444 (2018)

    Article  Google Scholar 

  44. W.H. Zhang, L. Xue, X. Jiang, Global stabilization for a class of stochastic nonlinear systems with SISS-like conditions and time delay. Int. J. Robust Nonlinear Control 28(13), 3909–3926 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Y.J. Zhao, A. Fatehi, B. Huang, Robust estimation of ARX models with time-varying time delays using variational Bayesian approach. IEEE Trans. Cybern. 48(2), 532–542 (2017)

    Article  Google Scholar 

  46. N. Zhao, R. Liu, Y. Chen, M. Wu, Y. Jiang, W. Xiong, C. Liu, Contract design for relay incentive mechanism under dual asymmetric information in cooperative networks. Wirel. Netw. 24(8), 3029–3044 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Joint Funds of the National Natural Science Foundation of China (No. U1734210), the National Natural Science Foundation of China (Nos. 61403165, K61603156) and the Qinglan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, K. Aitken-Based Stochastic Gradient Algorithm for ARX Models with Time Delay. Circuits Syst Signal Process 38, 2863–2876 (2019). https://doi.org/10.1007/s00034-018-0998-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0998-y

Keywords

Navigation