Skip to main content
Log in

An Adaptive Denoising Algorithm for Chaotic Signals Based on Improved Empirical Mode Decomposition

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

It is difficult to determine the threshold of mode cell in the interval-thresholding algorithm, when it is used to denoise chaotic signals. In this paper, an adaptive denoising algorithm is proposed for chaotic signals based on improved empirical mode decomposition. First, the noisy chaotic signal is decomposed into the intrinsic mode functions (IMFs) by improved complete ensemble empirical mode decomposition. Then, the zero-crossing scale thresholding denoising algorithm is used to denoise the IMFs with different thresholds. The optimal threshold is obtained by the Durbin–Watson criterion. With the optimal threshold, the final denoised chaotic signal is obtained. The proposed algorithm effectively solves the issue mentioned above. The experimental results show the proposed algorithm can denoise noisy chaotic signals in different conditions effectively and is better than other existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  2. A.O. Boudraa, J.C. Cexus, EMD-Based Signal Filtering. IEEE Trans. Instrum. Meas. 56(6), 2196–2202 (2007)

    Article  Google Scholar 

  3. G. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifurcat. Chaos. 9(7), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Chen, X.C. Zhou, J.Q. Fang, P.F. Zheng, J. Wang, Fault feature extraction and diagnosis of gearbox based on EEMD and deep briefs network. Int. J. Rotat. Mach. 2017, 9602650 (2017)

    Google Scholar 

  5. Y. Chen, C.T. Wu, H.L. Liu, EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal. Opt. Fiber Technol. 36, 63–67 (2017)

    Article  Google Scholar 

  6. M.A. Colominas, G. Schlotthauer, M.E. Torres, Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed. Signal Process. Control 14, 19–29 (2014)

    Article  Google Scholar 

  7. D.L. Donoho, De-noising via soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MATH  Google Scholar 

  8. Y.N. Guo, S.H. Huang, Y.T. Li, G.R. Naik, Edge effect elimination in single-mixture blind source separation. Circ. Syst. Signal Process. 32(5), 2317–2334 (2013)

    Article  MathSciNet  Google Scholar 

  9. Y.N. Guo, Q.J. Liu, A.H. Wang, C.L. Sun, W.Y. Tian, G.R. Naik, A. Abraham, Optimized phase-space reconstruction for accurate musical-instrument signal classification. Multimed. Tools Appl. 76(20), 20719–20737 (2017)

    Article  Google Scholar 

  10. Y.N. Guo, G.R. Naik, S. Huang, A. Abraham, H.T. Nguyen, Nonlinear multiscale maximal Lyapunov exponent for accurate myoelectric signal classification. Appl. Soft Comput. 36, 633–640 (2015)

    Article  Google Scholar 

  11. Y.N. Guo, G.R. Naik, H. Nguyen, Single channel blind source separation based local mean decomposition for Biomedical applications, in The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Osaka, Japan Jul 03–07, pp. 6812–6815 (2013)

  12. M. Han, Y.H. Liu, J.H. Xi, G. Wei, Noise smoothing for nonlinear time series using wavelet soft threshold. IEEE Signal Process. Lett. 14(1), 62–65 (2007)

    Article  Google Scholar 

  13. H. Hao, H.L. Wang, N.U. Rehman, A joint framework for multivariate signal denoising using multivariate empirical mode decomposition. Signal Process. 135, 263–273 (2017)

    Article  Google Scholar 

  14. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shin, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc. Roy. Soc. London A. 454, 903–995 (1998)

    Article  MATH  Google Scholar 

  15. Y. Kopsinis, S. Mclaughlin, Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57(4), 1351–1362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Li, B. Zhang, A novel weak signal detection method via chaotic synchronization using Chua’s circuit. IEEE Trans. Ind. Electron. 64(3), 2255–2265 (2017)

    Article  Google Scholar 

  17. Y. Ma, W.B. Shi, C.K. Peng, A.C. Yang, Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Med. Rev. 37, 85–93 (2018)

    Article  Google Scholar 

  18. G.R. Naik, S.E. Selvan, H.T. Nguyen, Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders. IEEE Trans. Neur. Sys. Reh. 24(7), 734–743 (2016)

    Article  Google Scholar 

  19. D.N. Rutledge, A.S. Barros, Durbin–Watson statistic as a morphological estimator of information content. Anal. Chim. Acta 454(2), 277–295 (2002)

    Article  Google Scholar 

  20. R.W. Schafer, What Is a Savitzky–Golay filter? IEEE Signal Process. Mag. 28(4), 111–117 (2011)

    Article  Google Scholar 

  21. J.S. Smith, The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2(5), 443–454 (2005)

    Article  Google Scholar 

  22. J.W. Sun, Y. Shen, Q. Yin, C.J. Xu, Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos. 23(1), 013140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.E. Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in The 36th IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2011) May 2011, pp. 4144–4147

  24. K. Urbanowicz, J.A. Hołyst, Noise-level estimation of time series using coarse-grained entropy. Phys. Rev. E 67(4), 046218 (2003)

    Article  Google Scholar 

  25. G. Vivó-Truyols, P.J. Schoenmakers, Automatic selection of optimal Savitzky–Golay smoothing. Anal. Chem. 78(13), 4598–4608 (2006)

    Article  Google Scholar 

  26. M.J. Wang, Y.C. Zeng, C.Q. Xie, G.F. Zhu, S.H. Tang, Application of Chen’s system to detecting weak harmonic signals. Acta Phys. Sin. 61(18), 180502 (2012)

    Google Scholar 

  27. X.Y. Wang, X.M. Bao, A novel image block cryptosystem based on a spatiotemporal chaotic system and a chaotic neural network. Chin. Phys. B 22(5), 050508 (2013)

    Article  Google Scholar 

  28. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61471310, 11747087), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 17C1530), and the Natural Science Foundation of Xiangtan University, China (Grant No. 15XZX33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhou, Z., Li, Z. et al. An Adaptive Denoising Algorithm for Chaotic Signals Based on Improved Empirical Mode Decomposition. Circuits Syst Signal Process 38, 2471–2488 (2019). https://doi.org/10.1007/s00034-018-0973-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0973-7

Keywords

Navigation