Skip to main content
Log in

The Gradient-Based Iterative Estimation Algorithms for Bilinear Systems with Autoregressive Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the parameter identification problem of bilinear systems, which are a special class of nonlinear systems. The basic idea is giving the input–output representation of the bilinear system through eliminating the state variables in the system. By using the hierarchical identification principle and the data filtering technique, we derive a gradient-based iterative (GI) algorithm, a hierarchical GI algorithm and a filtering-based GI algorithm for identifying the parameters of bilinear systems with colored noises. The simulation results indicate that the proposed algorithms are effective for identifying bilinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Dai, N.K. Sinha, Robust recursive least-squares method with modified weights for bilinear system identification. IEE Proc. D-Control Theory Appl. 136(3), 122–126 (1989)

    Article  MATH  Google Scholar 

  2. F. Ding, X.M. Liu, M.M. Liu, The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Franklin Inst. 353(7), 1518–1526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Ding, X.M. Liu, X.Y. Ma, Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 301, 135–143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Ding, F.F. Wang, T. Hayat, A. Alsaedi, Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique. IET Control Theory Appl. 11(3), 390–400 (2017)

    Article  MathSciNet  Google Scholar 

  5. F. Ding, X.H. Wang, L. Mao, L. Xu, Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering. Digit. Signal Process. 62, 211–223 (2017)

    Article  Google Scholar 

  6. F. Ding, F.F. Wang, L. Xu, M.H. Wu, Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering. J. Franklin Inst. 354(3), 1321–1339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. H.J. Feng, L. Peng, F.K. Zhu, Interval estimation for a simple bilinear model. Stat. Probab. Lett. 83, 2152–2159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Feng, M.H. Wu, Q.X. Li et al., Array factor forming for image reconstruction of one-dimensional nonuniform aperture synthesis radiometers. IEEE Geosci. Remote Sens. Lett. 13(2), 237–241 (2016)

    Article  Google Scholar 

  9. E. Ghadimi, I. Shames, M. Johansson, Multi-step gradient methods for networked optimization. IEEE Trans. Signal Process. 61(21), 5417–5429 (2013)

    Article  Google Scholar 

  10. S. Gibson, A. Wills, B. Ninness, Maximum-likelihood parameter estimation of bilinear systems. IEEE Trans. Autom. Control 50(10), 1581–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.N. Juang, C.H. Lee, Continuous-time bilinear system identification using single experiment with multiple pulses. Nonlinear Dyn. 69(3), 1009–1021 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Kalouptsidis, P. Koukoulas, V.J. Mathews, Blind identification of bilinear systems. IEEE Trans. Signal Process. 51(2), 484–499 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Katayama, H. Ase, Linear approximation and identification of MIMO Wiener–Hammerstein systems. Automatica 71, 118–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Kawaria, R. Patidar, N.V. George, Parameter estimation of MIMO bilinear systems using a Levy shuffled frog leaping algorithm. Soft Comput. (2016). doi:10.1007/s00500-016-2035-z

  15. H. Li, Y. Shi, W. Yan, On neighbor information utilization in distributed receding horizon control for consensus-seeking. IEEE Trans. Cybern. 46(9), 2019–2027 (2016)

    Article  Google Scholar 

  16. H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed \(\gamma \)-gain stability. Automatica 68, 148–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Li, W.S. Yan, Y. Shi, Continuous-time model predictive control of under-actuated spacecraft with bounded control torques. Automatica 75, 144–153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. G.Q. Li, C.Y. Wen, A.M. Zhang, Fixed point iteration in identifying bilinear models. Syst. Control Lett. 83, 28–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.H. Li, W.X. Zheng, J.P. Gu, L. Hua, Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements. J. Franklin Inst. 354(1), 316–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Ling, L. Peng, F. Zhu, Inference for a special bilinear time-series model. J. Time Ser. Anal. 36, 61–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y.W. Mao, F. Ding, Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique. Nonlinear Dyn. 79(3), 1745–1755 (2015)

    Article  MATH  Google Scholar 

  22. Y.W. Mao, F. Ding, A novel parameter separation based identification algorithm for Hammerstein systems. Appl. Math. Lett. 60, 21–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. D.D. Meng, Recursive least squares and multi-innovation gradient estimation algorithms for bilinear stochastic systems. Circuits Syst. Signal Process. 35(3), 1052–1065 (2016)

    MathSciNet  MATH  Google Scholar 

  24. H. Modares, A. Alfi, M.B.N. Sistani, Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. Eng. Appl. Artif. Intell. 23, 1105–1111 (2010)

    Article  Google Scholar 

  25. K.S. Narendra, K. Parthasarathy, Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Trans. Neural Netw. 2(2), 252–262 (1991)

    Article  Google Scholar 

  26. J. Pan, X. Jiang, X.K. Wan, W. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 15, (2017). doi:10.1007/s12555-016-0081-z

  27. J. Pan, X.H. Yang, H.F. Cai, B.X. Mu, Image noise smoothing using a modified Kalman filter. Neurocomputing 173, 1625–1629 (2016)

    Article  Google Scholar 

  28. P.L. Santos, J.A. Ramos, J.L.M. Carvalho, Identification of a benchmark Wiener–Hammerstein: a bilinear and Hammerstein–Bilinear model approach. Control Eng. Pract. 20(11), 1156–1164 (2012)

    Article  Google Scholar 

  29. F. Vicario, M.Q. Phan, R. Betti, R.W. Longman, Linear state representations for identification of bilinear discrete-time models by interaction matrices. Nonlinear Dyn. 77(4), 1561–1576 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. X.K. Wan, Y. Li, C. Xia, M.H. Wu, J. Liang, N. Wang, A T-wave alternans assessment method based on least squares curve fitting technique. Measurement 86, 93–100 (2016)

    Article  Google Scholar 

  31. D.Q. Wang, Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y.J. Wang, F. Ding, Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering. Nonlinear Dyn. 84(2), 1045–1053 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. X.H. Wang, F. Ding, Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle. Signal Process. 117, 208–218 (2015)

    Article  Google Scholar 

  34. X.H. Wang, F. Ding, Joint estimation of states and parameters for an input nonlinear state-space system with colored noise using the filtering technique. Circuits Syst. Signal Process. 35(2), 481–500 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. X.H. Wang, F. Ding, Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems. Int. J. Adapt. Control Signal Process. 30(6), 824–842 (2016)

    Article  MathSciNet  Google Scholar 

  36. D.Q. Wang, L. Mao, F. Ding, Recasted models based hierarchical extended stochastic gradient method for MIMO nonlinear systems. IET Control Theory Appl. 11(4), 476–485 (2017)

  37. T.Z. Wang, J. Qi, H. Xu et al., Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter. ISA Trans. 60, 156–163 (2016)

    Article  Google Scholar 

  38. C. Wang, T. Tang, Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. T.Z. Wang, H. Wu, M.Q. Ni et al., An adaptive confidence limit for periodic non-steady conditions fault detection. Mech. Syst. Signal Process. 72–73, 328–345 (2016)

    Article  Google Scholar 

  40. D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Franklin Inst. 352(11), 5292–5370 (2015)

    Article  MathSciNet  Google Scholar 

  41. J.D. Wang, Q.H. Zhang, L. Ljung, Revisiting Hammerstein system identification through the two-stage algorithm for bilinear parameter estimation. Automatica 45(11), 2627–2633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Xu, A proportional differential control method for a time-delay system using the Taylor expansion approximation. Appl. Math. Computat. 236, 391–399 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Xu, The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660–667 (2016)

    Article  Google Scholar 

  45. L. Xu, L. Chen, W.L. Xiong, Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dyn. 79(3), 2155–2163 (2015)

    Article  MathSciNet  Google Scholar 

  46. L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)

  47. L. Xu, F. Ding, The parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle. IET Signal Process. 11, (2017). doi:10.1049/iet-spr.2016.0220

  48. X.Y. Zhang, J.B. Hoagg, Subsystem identification of multivariable feedback and feedforward systems. Automatica 72, 131–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61472195) and the Taishan Scholar Project Fund of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, X. & Ding, F. The Gradient-Based Iterative Estimation Algorithms for Bilinear Systems with Autoregressive Noise. Circuits Syst Signal Process 36, 4541–4568 (2017). https://doi.org/10.1007/s00034-017-0527-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0527-4

Keywords

Navigation