Skip to main content
Log in

New Approach for Stability Analysis of Interconnected Nonlinear Discrete-Time Systems Based on Vector Norms

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The stability analysis of interconnected large-scale systems is generally characterized by some degree of difficulty, specifically when the interconnections gather a large number of nonlinear subsystems and the couplings evolve according to nonlinear functions in time. In this paper, a novel systematic analysis procedure of fully interconnected discrete-time nonlinear systems with nonlinear interconnections is presented. First, a new arrow form representation of the interconnected system state space model is generated. The obtained generalized thin arrow state matrix is developed by combining the instantaneous subsystems characteristic polynomials, as well as a set of arbitrary and freely parameters. Then, the stability analysis is achieved using the comparison principle and vector norms by translating the stability properties of the lower-dimensional comparison system into those of the considered interconnected system. Aside the proposed systematic formulation and simplicity over existing techniques based mainly on LMIs, it is shown that through an appropriate choice of the model parameters, the developed stability conditions are opportune to locate interesting estimation of the stability domains. Lastly, two numerical examples are included to show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Baizid, G. Giglio, F. Pierri, M.A. Trujillo, G. Antonelli, F. Caccavale, A. Viguria, S. Chiaverini, A. Ollero, Behavioral control of unmanned aerial vehicle manipulator systems. Auton Robot (2016). doi:10.1007/s10514-016-9590-0

    Google Scholar 

  2. M. Benrejeb, Stability study of two level hierarchical nonlinear systems. Plenary session at the 12th IFAC Symposium on Large Scale Systems: Theory and Applications, pp. 30-41 (2010)

  3. M. Benrejeb, On the use of arrow form matrices for processes stability and stabilizability studies. Plenary lecture at the IEEE International Conference on Systems and Computer Science ICSCS, pp. 1–8 (2013)

  4. M. Benrejeb, P. Borne, On an algebraic stability criterion for non-linear processes. Interpretation in the frequency domain. in Proceedings of the Measurement and Control International Symposium MECO’78, pp. 678–682 (1978)

  5. M. Benrejeb, P. Borne, F. Laurent, On an application of the arrow form representation in the processes analysis (in frensh). RAIRO Autom. 16(2), 133–146 (1982)

    MATH  Google Scholar 

  6. M. Benrejeb, D. Soudani, A. Sakly, P. Borne, New discrete Tanaka Sugeno Kang fuzzy systems characterization and stability domain. Int. J. Comput. Commun. 1(4), 9–19 (2006)

    Article  Google Scholar 

  7. A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Society for Industrial and Applied Mathematics, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  8. P. Borne, M. Dambrine, W. Perruquetti, J. Richard, Vector Lyapunov funtions: Nonlinear, time-varying, ordinary and functional differential equations, in Advances in Stability Theory at the End of the 20th Century (Stability and Control: Theory, Methods and Applications), ed. by A. Martynyuk (Taylor and Francis, London, 2003), pp. 49–73

    Google Scholar 

  9. P. Borne, J. C. Gentina, F. Laurent, Stability study of large scale non linear discrete systems by the use of vectorial norms. Proceedings of the Large Scale Systems Theory and Applications, 187–194 (1976)

  10. P. Borne, J. Richard, N. Radhy, Stability, stabilization, regulation using vector norms, in Nonlinear Systems: Stability and Stabilization, ed. by A. Fossard, D. Normand-Cyrot (Chapman and Hall and Masson, London, 1996), pp. 45–90

    Chapter  Google Scholar 

  11. D. Chatterjee, D. Liberzon, Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions. SIAM J. Control Optim. 45(1), 174–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. X. Chen, S. Stankovic, Decomposition and decentralized control of systems with multi-overlapping structure. Automatica 41(10), 1765–1772 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. N.Y. Chiang, V.M. Zavala, Large-scale optimal control of interconnected natural gas and electrical transmission systems. Appl. Energy 168, 226–235 (2016)

    Article  Google Scholar 

  14. S. Dashkovskiy, B. Rüffer, F. Wirth, Small gain theorems for large scale systems and construction of ISS Lyapunov functions. SIAM J. Control Optim. 48(6), 4089–4118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Ebihara, D. Peaucelle, D. Arzelier, Analysis and Synthesis of Interconnected Positive Systems. IEEE Trans. Autom. Control (2016). doi:10.1109/TAC.2016.2558287

  16. S. Elmadssia, K. Saadaoui, M. Benrejeb, New stability conditions for nonlinear time varying delay systems. Int. J. Syst. Sci. 47(9), 2009–2021 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.L. Filali, M. Benrejeb, P. Borne, On observer-based secure communication design using discrete-time hyperchaotic systems. Commun. Nonlinear Sci. 19(5), 1424–1432 (2014)

    Article  MathSciNet  Google Scholar 

  18. R. Geiselhart, M. Lazar, F. Wirth, A relaxed small-gain theorems for interconnected discrete-time systems. IEEE Trans. Autom. Control 3(60), 812–817 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Geiselhart, F.R. Wirth, Relaxed ISS small-gain gain theorems for discrete-time systems. SIAM J. Control Optim. 54(2), 423–449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Gentina, P. Borne, C. Burgat, J. Bernussou, L. Grujic, On the stability of large scale systems. Vector norms (in french). RAIRO Autom. 13(1), 57–75 (1979)

    Google Scholar 

  21. V. Ghanbari, P. Wu, P. J. Antsaklis, Large-Scale Dissipative and Passive Control Systems and the Role of Star and Cyclic Symmetries, IEEE Trans. Autom. Control. doi:10.1109/TAC.2016.2528824

  22. W. Haddad, D. Bernstein, Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability. part II: Discrete-time theory. Int. J. Robust Nonlinear Control 4(2), 249–265 (1994)

    Article  MATH  Google Scholar 

  23. W. Haddad, S. Nersesov, Stability and Control of Large-Scale Dynamical Systems: A Vector Dissipative Systems Approach (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  24. T. Ishizaki, K. Kashima, J.I. Imura, K. Aihara, Model reduction and clusterization of large-scale bidirectional networks. IEEE Trans. Autom. Control 59(1), 48–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Z. Jiang, Y. Wang, Input-to-state stability for discrete-time nonlinear systems. Automatica 6(37), 857–869 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Jury, B. Lee, On the stability of a certain class of nonlinear sampled data systems. IEEE Trans. Autom. Control 9(1), 51–61 (1964)

    Article  MathSciNet  Google Scholar 

  27. I. Karafyllis, Z. Jiang, A vector small-gain theorem for general non-linear control systems. IMA J. Math. Control Inf. 28(3), 309–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Kozlov, O. Kozlova, Investigation of stability of nonlinear continuous-discrete models of economic dynamics using vector Lyapunov function. I. J. Comput. Sys. Sc. Int.+ 48(2), 262–271 (2009)

    Article  MATH  Google Scholar 

  29. H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed \(\gamma \)-gain stability. Automatica 68, 148–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Liu, C. Xu, D. Liu, Input-to-state-stability-type comparison principles and input-to-state stability for discrete-time dynamical networks with time delays. Int. J. Robust Nonlinear Control 23(4), 450–472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Lur’e, V. Postnikov, On the theory of stability of control systems. Appl. Math. Mech. 8(3), 246–248 (1944)

    MATH  Google Scholar 

  32. A. Michel, L. Hou, D. Liu, Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems (Birkhäuser Basel, Boston, 2008)

    MATH  Google Scholar 

  33. H. Nijmeijer, A. Van Der Schaft, Nonlinear Dynamical Control Systems (Springer-Verlag, New York, 1990)

    Book  MATH  Google Scholar 

  34. N. Rouche, P. Habets, M. Laloy, Stability Theory by Liapunov’s Direct Method (Springer, New York, 1977)

    Book  MATH  Google Scholar 

  35. B.S. Rueffer, Small-gain conditions and the comparison principle. IEEE Trans. Autom. Control 55(7), 1732–1736 (2010)

    Article  MathSciNet  Google Scholar 

  36. T. Sarkar, M. Roozbehani, M. A. Dahleh, Robustness scaling in large networks. in Proceedings of The 2016 American Control Conference ACC 2016, pp. 197-202 (2016)

  37. M.E. Sezer, D.D. Siljak, Robust stability of discrete systems. Int. J. Control 48(5), 2055–2063 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Sfaihi, M. Benrejeb, On Order Reduction and Stability Analysis of Singularly Perturbed T-S Fuzzy Models. in Proceedings of The IEEE International Conference on Control, Decision and Information Technologies CoDIT’13, pp. 106-111 (2013)

  39. B. Sfaihi, M. Benrejeb, On stability analysis of nonlinear discrete singularly perturbed T-S fuzzy models. Int. J. Dyn. Control 1(1), 20–31 (2013)

    Article  MATH  Google Scholar 

  40. B. Sfaihi, M. Benrejeb, On stability conditions of singularly perturbed nonlinear Lur’e discrete-time systems. Nonlinear Dyn. Syst. Theory 13(2), 203–216 (2013)

    MathSciNet  MATH  Google Scholar 

  41. J. Shi, J. Zhang, X. Xu, X. Yu, Stability analysis of stochastic interconnected systems by vector Lyapunov function method. Asian J Control 17(5), 1789–1797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Siljak, Decentralized Control of Complex Systems (Academic Press, Boston, 1991)

    MATH  Google Scholar 

  43. E. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Swaroop, J.K. Hedrick, String stability of interconnected systems. IEEE Trans. Autom. Control 41(3), 349–357 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Tanner, S. Loizou, K. Kyriakopoulo, Nonholonomic navigation and control of multiple mobile manipulators. IEEE Trans. Robot. Autom. 19, 53–64 (2003)

    Article  Google Scholar 

  46. Y. Tsypkin, The absolute stability of large-scale nonlinear sampled-data systems. Dokl. Akad. Nauk SSSR+ 145(10), 52–55 (1962)

    Google Scholar 

  47. M.H. Wu, S. Ogawa, A. Konno, Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots. Adv. Robot. 30(2), 131–149 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boutheina Sfaihi.

Appendices

Appendices

1.1 Appendix A1

The nonlinear system  (1) can be described, in state space, as

$$\begin{aligned} {S_i}:x_{k + 1}^i= & {} {A_{ii}}\left( . \right) x_k^i + {B_{ii}}\left( . \right) u_k^i \end{aligned}$$
(48)
$$\begin{aligned} {A_{ii}}\left( . \right)= & {} \left[ {\begin{array}{*{20}{c}} 0&{} \cdots &{}0&{}{\,\, - {a_{ii,{n_i}}}\left( . \right) } \\ 1&{}0&{} \vdots &{}{ - {a_{ii,{n_i} - 1}}\left( . \right) } \\ 0&{} {\ddots } &{}0&{} \vdots \\ 0&{}0&{}1&{}{\,\, - {a_{ii,1}}\left( . \right) } \end{array}} \right] ,\,\,{B_{ii}}\left( . \right) = \left[ {\begin{array}{*{20}{c}} {{b_{ii,{n_i}}}\left( . \right) } \\ {{b_{ii,{n_i} - 1}}\left( . \right) } \\ \vdots \\ {{b_{ii,1}}\left( . \right) } \end{array}} \right] \end{aligned}$$
(49)

with \(x_k^i = {\left[ {x_{1,k}^i, \ldots ,x_{{n_i} - 1,k}^i,x_{{n_i},k}^i} \right] ^T} \in {\mathfrak {R}^{{n_i}}}\) the system \({S_i}\) state vector, \({A_{ii}}\left( . \right) \in {\mathfrak {R}^{{n_i} \times {n_i}}}\) and \({B_{ii}}\left( . \right) \in {\mathfrak {R}^{{n_i}}}\). A change of variables defined by \(z_k^i = {P_i}x_k^i\)

$$\begin{aligned} {P_i} = \left[ {\begin{array}{*{20}{c}} 0&{}0&{} \cdots &{}0&{}1 \\ 1&{}{{\alpha _{i,1}}}&{}{\alpha _{i,1}^2}&{} \cdots &{}{\alpha _{i,1}^{{n_i} - 1}} \\ \vdots &{} \vdots &{} \vdots &{} \cdots &{} \vdots \\ 1&{}{{\alpha _{i,{n_i} - 2}}}&{}{\alpha {{_{i,{n_i} - }^2}_2}}&{}{}&{}{\alpha _{i,{n_i} - 2}^{{n_i} - 1}} \\ 1&{}{{\alpha _{i,{n_1} - 1}}}&{}{\alpha {{_{i,{n_i} - }^2}_1}}&{} \cdots &{}{\alpha _{i,{n_i} - 1}^{{n_i} - 1}} \end{array}} \right] \end{aligned}$$
(50)

with \(z_k^i \in {\mathfrak {R}^{{n_i}}}\), \({P_i} \in {\mathfrak {R}^{{n_i} \times {n_i}}}\) an invertible transformation and \({\alpha _{i,j}}\) , \(j = 1,2, \cdots ,{n_i} - 1\) distinct constant arbitrary parameters, leads to the system dynamics

$$\begin{aligned} {S_i}:z_{k + 1}^i= & {} {F_{ii}}\left( . \right) z_k^i + {G_{ii}}\left( . \right) u_k^i \nonumber \\ {F_{ii}}\left( . \right)= & {} \,\left[ {\begin{array}{*{20}{c}}{\delta _{ii,{n_i}}^{}\left( . \right) }&{}{{\beta _{i,1}}}&{}{{\beta _{i,2}}}&{} \cdots &{}{{\beta _{i,{n_i} - 1}}}\\ {\gamma _{i,1}^{}\left( . \right) }&{}{{\alpha _{i,1}}}&{}{}&{}{}&{}{}\\ {\gamma _{i,2}^{}\left( . \right) }&{}{}&{}{{\alpha _{i,2}}}&{}{}&{}{}\\ \vdots &{}{}&{}{}&{} {\ddots } &{}{}\\ {\gamma _{i,{n_i} - 1}^{}\left( . \right) }&{}{}&{}{}&{}{}&{}{{\alpha _{i,{n_i} - 1}}}\end{array}} \right] ,\,\,{G_{ii}}\left( . \right) = \left[ {\begin{array}{*{20}{c}}{{\sigma _{ii}}\left( . \right) }\\ {\psi _{ii,1}^{}\left( . \right) }\\ {\psi _{ii,2}^{}\left( . \right) }\\ \vdots \\ {\psi _{ii,{n_i} - 1}^{}\left( . \right) }\end{array}} \right] \nonumber \\ \end{aligned}$$
(51)

with for \(\forall j=1,2,\ldots ,{{n}_{i}}-1\),

$$\begin{aligned} {{\beta }_{i,j}}= & {} \prod \nolimits _{k=1,k\ne j}^{{{n}_{i}}-1}{{{({{\alpha }_{i,j}}-{{\alpha }_{i,k}})}^{-1}}}\\ {{\gamma }_{i,j}}(.)= & {} -{{P}_{{{A}_{ii}}}}(.,{{\alpha }_{i,j}})\\ {{\delta }_{ii,{{n}_{i}}}}(.)= & {} -{{a}_{ii,1}}(.)-\sum \nolimits _{p=1}^{{{n}_{i}}-1}{{{\alpha }_{i,p}}}\\ {{\psi }_{ii,j}}(.)= & {} {{R}_{ii}}(.,{{\alpha }_{i,j}})\\ {{\sigma }_{ii}}(.)= & {} {{b}_{ii,1}}(.) \end{aligned}$$

Polynomials \({{P}_{{{A}_{ii}}}}(\,.\,,{{\lambda }_{{}}})\) and \({{R}_{ii}}(\,.\,,{{\lambda }_{{}}})\) are defined by

$$\begin{aligned} {{P}_{{{A}_{ii}}}}(.,\lambda )=\lambda _{{}}^{{{n}_{i}}}+\sum \nolimits _{p=1}^{{{n}_{i}}}{{{a}_{ii,p}}(.){{\lambda }^{{{n}_{i}}-p}}} \end{aligned}$$

and

$$\begin{aligned} {{R}_{ii}}(.,{{\lambda }_{{}}})=\sum \nolimits _{p=1}^{{{n}_{i}}}{{{b}_{ii,m}}(.){{\lambda }^{{{n}_{i}}-p}}} \end{aligned}$$

where \({P_{{A_{ii}}}}(\,.\,,{\lambda _{}})\) denotes the instantaneous characteristic polynomial of the system \({S_i}\) described by (1), (48) or (51).

1.2 Appendix A2

Consider the discrete nonlinear Lur’e system described by means of the following block-oriented model of Fig. 8 where \(f\left( . \right) :\mathfrak {R}\rightarrow \mathfrak {R}\) represents a nonlinear function, \({{B}_{0}}\left( s \right) ={{s}^{-1}}\left( 1-{{e}^{-Ts}} \right) \) a zero-order holder and \({{T}_{{}}}=0.2s\) the sampling time. \(D\left( s\right) =s\left( 1+{{\tau }_{1}}s \right) \left( 1+{{\tau }_{2}}s \right) \) and \(N\left( s\right) ={{\lambda }_{2}}{{s}^{2}}+{{\lambda }_{1}}s+{{\lambda }_{0}}\) are polynomials with constant parameters \({{\tau }_{1}}=0.1s\), \({{\tau }_{2}}=0.005s\), \({{\lambda }_{0}}=0.98\), \({{\lambda }_{1}}=0.098\) and \({{\lambda }_{2}}=4.7\,\,{{10}^{-4}}\).

Fig. 8
figure 8

Studied third-order Lur’e system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfaihi, B., Fekih, S. & Benrejeb, M. New Approach for Stability Analysis of Interconnected Nonlinear Discrete-Time Systems Based on Vector Norms. Circuits Syst Signal Process 36, 3983–4005 (2017). https://doi.org/10.1007/s00034-017-0511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0511-z

Keywords

Navigation