Skip to main content
Log in

A Primal Douglas–Rachford Splitting Method for the Constrained Minimization Problem in Compressive Sensing

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Compressive sensing has achieved great success in many scientific research fields. It has revealed that sparse signals can be stably recovered from a small number of noisy measurements by solving the constrained convex \({\ell }_1\)-minimization problem. In practice, a faster algorithm for solving this optimization problem is the key to compressive sensing. The Douglas–Rachford splitting method is a well-known operator splitting method that has been widely applied for solving a certain class of convex composite problems. In particular, its dual application results in the popular alternating direction method of multipliers (ADMM). In this paper, we reformulate the constrained convex \({\ell }_1\)-minimization problem as a convex composite problem with a special structure and then apply the primal Douglas–Rachford splitting method to solve it. The computational cost of the developed algorithm in each iteration is dominated by the projection onto the constraint set. A fast and efficient method of computing the projection is proposed. Numerical results show that the developed algorithm performs better than the popular NESTA and LADMM (inexact ADMM) in terms of accuracy and run time for large-scale sparse signal recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Artacho, J. Borwein, M. Tam, Douglas–Rachford feasibility methods for matrix completion problems. ANZIAM J. 55(4), 299–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Alexeev, J. Cahill, D. Mixon, Full spark frames. J. Fourier Anal. Appl. 18(6), 1167–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Bauschke, P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces (Springer, New York, 2011). CMS Books in Mathematics

    Book  MATH  Google Scholar 

  5. J. Benedetto, P. Ferreira, Modern Sampling Theory: Mathematics and Applications (Birkhäuser, Boston, 2001). Applied and Numerical Harmonic Analysis

    Book  MATH  Google Scholar 

  6. P. Bühlmann, S. van de Geer, Statistics for High-Dimensional Data (Springer, Berlin, 2011). Springer Series in Statistics

    Book  MATH  Google Scholar 

  7. J. Bobin, J. Starck, R. Ottensamer, Compressed sensing in astronomy. IEEE J. Sel. Top. Signal Process. 2(5), 718–726 (2008)

    Article  Google Scholar 

  8. S. Becker, J. Bobin, E. Candès, NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Blumensath, M. Davies, Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inf. Theory 55(4), 1872–1882 (2009)

    Article  MathSciNet  Google Scholar 

  10. S. Chen, D. Donoho, M. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Combettes, V. Wajs, Signal recovery by proximal forward–backward splitting. SIAM J. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Combettes, J. Pesquet, A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Topics Signal Process. 1(4), 564–574 (2007)

    Article  Google Scholar 

  17. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(8), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Daneshmand, F. Facchinei, V. Kungurtsev, G. Scutari, Hybrid random/deterministic parallel algorithms for convex and nonconvex big data optimization. IEEE Trans. Signal Process. 63(15), 3914–3929 (2015)

    Article  MathSciNet  Google Scholar 

  20. A. Daneshmand, F. Facchinei, V. Kungurtsev, G. Scutari, Flexible selective parallel algorithms for big data optimization. in 2014 48th Asilomar Conference on Signals, Systems and Computers, IEEE (2014), pp. 3–7

  21. I. Dassios, K. Fountoulakis, J. Gondzio, A second-order method for compressed sensing problems with coherent and redundant dictionaries. http://arxiv.org/abs/1405.4146, (2014)

  22. I. Dassios, K. Fountoulakis, J. Gondzio, A preconditioner for a primal-dual newton conjugate gradients method for compressed sensing problems. SIAM J. Sci. Comput. 37(6), A2783–A2812 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Dong, Douglas–Rachford splitting method for semidefinite programming. J. Appl. Math. Comput. 51(1), 569–591 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Demanet, X. Zhang, Eventual linear convergence of the Douglas–Rachford iteration for basis pursuit. Math. Comput. 85, 209–238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Douglas, H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Duarte, M. Davenport, D. Takhar, J. Laska, S. Ting, K. Kelly, R. Baraniuk, Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  27. J. Eckstein, D. Bertsekas, On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  29. Y. Eldar, G. Kutyniok, Compressed Sensing Theory and Applications (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  30. J. Eckstein, Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some illustrative computational results, RUTCOR Research Report (RRR) (2012)

  31. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Birkhäuser, Basel, 2013)

    Book  MATH  Google Scholar 

  32. M. Fazel, Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002)

  33. B. He, X. Yuan, On the convergence rate of Douglas–Rachford operator splitting method. Math. Program. 153(2), 715–722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Hale, W. Yin, Y. Zhang, Fixed-point continuation for \(\ell _1\)-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Herrmann, M. Friedlander, O. Yilmaz, Fighting the curse of dimensionality: compressive sensing in exploration seismology. IEEE Signal Process. Mag. 29(3), 88–100 (2012)

    Article  Google Scholar 

  36. D. Holland, M. Bostock, L. Gladden, D. Nietlispach, Fast multidimensional NMR spectroscopy using compressed sensing. Angew. Chem. Int. Ed. 50(29), 6548–6551 (2011)

    Article  Google Scholar 

  37. M. Herman, T. Strohmer, High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    Article  MathSciNet  Google Scholar 

  38. A. Lenoir, P. Mahey, A survey on operator splitting and decomposition of convex programs. http://www.optimization-online.org/DB_FILE/2015/07/5039 (2015)

  39. G. Li, T. Pong, Douglas–Rachford splitting for nonconvex feasibility problems. http://arxiv.org/abs/1409.8444v1 (2014)

  40. M. Lustig, D. Donoho, J. Pauly, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  41. M. Lai, J. Wang, An unconstrained \(\ell _q\) minimization with \(0<q\le 1\) for sparse solution of underdetermined linear systems. SIAM J. Optim. 21(1), 82–101 (2011)

    Article  MathSciNet  Google Scholar 

  42. Z. Lu, T. Pong, Y. Zhang, An alternating direction method for finding Dantzig selectors. Comput. Stat. Data Anal. 35(8), 4037–4046 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Masao, The primal Douglas–Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem. Math. Program. 72(1), 1–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, M. Lustig, Fast \(\ell _1\)-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)

    Article  Google Scholar 

  45. M. Mishali, Y. Eldar, From theory to practice: sub-nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010)

    Article  Google Scholar 

  46. \(\ell _1\)-Magic. http://www.acm.caltech.edu/l1magic/ (2006)

  47. T. Ni, J. Zhai, A matrix-free smoothing algorithm for large-scale support vector machines. Inf. Sci. 358–359(3), 29–43 (2016)

    Article  Google Scholar 

  48. NESTA. http://statweb.stanford.edu/~candes/nesta/ (2011)

  49. D. O’Connor, L. Vandenberghe, Primal-dual decomposition by operator splitting and applications to image deblurring. SIAM J. Imaging Sci. 7(3), 1724–1754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Osher, Y. Mao, B. Dong, W. Yin, Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Pfander, H. Rauhut, J. Tanner, Identification of matrices having a sparse representation. IEEE Trans. Signal Process. 56(11), 5376–5388 (2008)

    Article  MathSciNet  Google Scholar 

  52. Y. Pfeffer, Compressive Sensing for Hyperspectral Imaging. Research thesis, Israel Institute of Technology (2010)

  53. H. Rauhut, G. Pfander, Sparsity in time-frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    Book  MATH  Google Scholar 

  55. G. Steidl, T. Teuber, Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Y. Shrot, L. Frydman, Compressed sensing and the reconstruction of ultrafast 2D NMR data: principles and biomolecular applications. J. Magn. Reson. 209(2), 352–358 (2011)

    Article  Google Scholar 

  57. J. Tropp, J. Laska, M. Duarte, J. Romberg, R. Baraniuk, Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2010)

    Article  MathSciNet  Google Scholar 

  58. S. Vasanawala, M. Alley, B. Hargreaves, R. Barth, J. Pauly, M. Lustig, Improved pediatric MR imaging with compressed sensing. Radiology 256(2), 607–616 (2010)

    Article  Google Scholar 

  59. J. Yang, Y. Zhang, Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  60. J. Yang, X. Yuan, Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. W. Yin, S. Osher, D. Goldfarb, J. Darbon, Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. YALL1. http://yall1.blogs.rice.edu/ (2011)

  63. C. Zhang, Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. W. Zhu, S. Shu, L. Cheng, Proximity point algorithm for low-rank matrix recovery from sparse noise corrupted data. Appl. Math. Mech. 35(2), 259–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Zhang, J. Xin, Minimization of transformed \(\ell _1\) penalty: closed form representation and iterative thresholding algorithms. arXiv preprint arXiv:1412.5240 (2014)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the associate editor and editor-in chief for their constructive comments, which significantly improved this paper. This research was supported by the National Natural Science Foundation of China under the Grants 11131006, 41390450, 91330204 and 11271297 and in part supported by the National Basic Research Program of China under the Grant 2013CB329404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigen Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Peng, J., Han, X. et al. A Primal Douglas–Rachford Splitting Method for the Constrained Minimization Problem in Compressive Sensing. Circuits Syst Signal Process 36, 4022–4049 (2017). https://doi.org/10.1007/s00034-017-0498-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0498-5

Keywords

Navigation