Skip to main content
Log in

Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The sine signals are widely used in signal processing, communication technology, system performance analysis and system identification. Many periodic signals can be transformed into the sum of different harmonic sine signals by using the Fourier expansion. This paper studies the parameter estimation problem for the sine combination signals and periodic signals. In order to perform the online parameter estimation, the stochastic gradient algorithm is derived according to the gradient optimization principle. On this basis, the multi-innovation stochastic gradient parameter estimation method is presented by expanding the scalar innovation into the innovation vector for the aim of improving the estimation accuracy. Moreover, in order to enhance the stabilization of the parameter estimation method, the recursive least squares algorithm is derived by means of the trigonometric function expansion. Finally, some simulation examples are provided to show and compare the performance of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Andrei, An adaptive conjugate gradient algorithm for large-scale unconstrained optimization. J. Comput. Appl. Math. 292, 83–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Belega, D. Petri, Sine-wave parameter estimation by interpolated DFT method based on new cosine windows with high interference rejection capability. Digit. Signal Process. 33, 60–70 (2014)

    Article  Google Scholar 

  3. D. Belega, D. Petri, Accuracy analysis of the sine-wave parameters estimation by means of the windowed three-parameter sine-fit algorithm. Digit. Signal Process. 50, 12–23 (2016)

    Article  Google Scholar 

  4. X. Cao, D.Q. Zhu, S.X. Yang, Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater environments. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2015.2482501

    MathSciNet  Google Scholar 

  5. J. Chen, Y. Ren, G. Zeng, An improved multi-harmonic sine fitting algorithm based on Tabu search. Measurement 59, 258–267 (2015)

    Article  Google Scholar 

  6. Z.Z. Chu, D.Q. Zhu, S.X. Yang, Observer-based adaptive neural network trajectory tracking control for remotely operated Vehicle. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS

    Google Scholar 

  7. S. Deng, Z. Wan, A three-term conjugate gradient algorithm for large-scale unconstrained optimization problems. Appl. Num. Math. 92, 70–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Ding, System Identification-Performances Analysis for Identification Methods (Science Press, Beijing, 2014)

    Google Scholar 

  9. F. Ding, X.M. Liu, Y. Gu, An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. J. Franklin Inst. 353(2), 398–408 (2016)

    Article  MathSciNet  Google Scholar 

  10. F. Ding, P.X. Liu, G.J. Liu, Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit. Signal Process. 20(3), 664–677 (2010)

    Article  Google Scholar 

  11. F. Ding, X.M. Liu, M.M. Liu, The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Franklin Inst. 353(7), 1518–1526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Ding, X.M. Liu, X.Y. Ma, Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 301, 135–143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Ding, X.H. Wang, Q.J. Chen, Y.S. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. 35(9), 3323–3338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Guo, Y.L. Zhao, C.Y. Sun, Y. Yu, Recursive identification of FIR systems with binary-valued outputs and communication channels. Automatica 60, 165–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Jafari, M. Salimifard, M. Dehghani, Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. ISA Trans. 53(4), 1243–1252 (2014)

    Article  Google Scholar 

  16. A. Janot, P. Vandanjon, M. Gautier, A revised Durbin–Wu–Hausman test for industrial robot identification. Control Eng. Pract. 48, 52–62 (2016)

    Article  Google Scholar 

  17. Y. Ji, X.M. Liu, F. Ding, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Ji, X.M. Liu, Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499–1517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. X. Li, F. Ding, Signal modeling using the gradient search. Appl. Math. Lett. 26(8), 807–813 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Li, Y. Shi, W. Yan, On neighbor information utilization in distributed receding horizon control for consensus-seeking. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2015.2459719

    Google Scholar 

  21. H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed \(\gamma \)-gain stability. Automatica 68, 148–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Li, Y.J. Zheng, Z.P. Lin, Recursive identification of time-varying systems: self-tuning and matrix RLS algorithms. Syst. Control Lett. 66, 104–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y.W. Mao, F. Ding, A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems. Digit. Signal Process. 46, 215–225 (2015)

    Article  MathSciNet  Google Scholar 

  24. I. Necoara, V. Nedelcu, On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems. Automatica 55, 209–216 (2015)

    Article  MathSciNet  Google Scholar 

  25. J. Pan, X.H. Yang, H.F. Cai, B.X. Mu, Image noise smoothing using a modified Kalman filter. Neurocomputing 173, 1625–1629 (2016)

    Article  Google Scholar 

  26. J. Vörös, Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities. IEEE Trans. Autom. Control 44(11), 2145–2149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. D.Q. Wang, Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. D.Q. Wang, F. Ding, Parameter estimation algorithms for multivariable Hammerstein CARMA systems. Inf. Sci. 355–356(10), 237–248 (2016)

    Article  MathSciNet  Google Scholar 

  29. Y.J. Wang, F. Ding, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 71, 308–313 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Y.J. Wang, F. Ding, The filtering based iterative identification for multivariable systems. IET Control Theory Appl. 10(8), 894–902 (2016)

    Article  MathSciNet  Google Scholar 

  31. Y.J. Wang, F. Ding, The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique. Signal Process. 128, 212–221 (2016)

    Article  Google Scholar 

  32. Y.J. Wang, F. Ding, Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering. Nonlinear Dyn. 84(2), 1045–1053 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. T.Z. Wang, J. Qi, H. Xu et al., Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter. ISA Trans. 60, 156–163 (2016)

    Article  Google Scholar 

  34. T.Z. Wang, H. Wu, M.Q. Ni et al., An adaptive confidence limit for periodic non-steady conditions fault detection. Mech. Syst. Signal Process. 72–73, 328–345 (2016)

    Article  Google Scholar 

  35. D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Franklin Inst. 352(11), 5292–5307 (2015)

  36. L. Xu, A proportional differential control method for a time-delay system using the Taylor expansion approximation. Appl. Math. Comput. 236, 391–399 (2014)

    MathSciNet  MATH  Google Scholar 

  37. L. Xu, The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660–667 (2016)

    Article  Google Scholar 

  38. L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Xu, L. Chen, W.L. Xiong, Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dyn. 79(3), 2155–2163 (2015)

    Article  MathSciNet  Google Scholar 

  40. X.P. Xu, F. Wang, G.J. Liu, Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm. IET Signal Process. 7(8), 766–773 (2013)

    Article  Google Scholar 

  41. Y. Zhang, Unbiased identification of a class of multi-input single-optput systems with correlated disturbances using bias compensation methods. Math. Comput. Model. 53(9–10), 1810–1819 (2011)

    Article  MATH  Google Scholar 

  42. G.Q. Zhang, X.K. Zhang, H.S. Pang, Multi-innovation auto-constructed least squares identification for 4 DOF ship manoeuvring modelling with full-scale trial data. ISA Trans. 58, 186–195 (2015)

    Article  Google Scholar 

  43. S.X. Zhao, F. Wang, H. Xu, J. Zhu, Multi-frequency identification method in signal processing. Digit. Signal Process. 19(4), 555–566 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61273194) and Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 12KJB120005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Ding, F. Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling. Circuits Syst Signal Process 36, 1735–1753 (2017). https://doi.org/10.1007/s00034-016-0378-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0378-4

Keywords

Navigation