Skip to main content
Log in

New CMOS Current-Mode Analogue to Digital Power Converter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The paper presents a completely new realization of a current-mode power detector employing a four-quadrant CMOS analogue multiplier, integrator, zero-crossing detectors and a grounded capacitor. Based on the value of the integration of the original input signals, a calculation is performed using the definition formulas. The product of input current signals was directly introduced into the integration circuit, and its digital equivalent was subsequently formed. Signal-processing-related errors and errors bound were investigated and presented in the paper. Simulation, performed using HSPICE with \(0.25\,\upmu \hbox {m}\) technology, and experimental results confirmed the performance of the proposed circuit. The obtained results show that the scheme improves the detector’s accuracy to over 1 %, while widening the operating frequency range to up to 100 MHz. The maximum power consumptions of converter at ±2.5 V supply voltages amount to approximately 8.37 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.T. Abulma’atti, Improved analysis of implicit RMS detectors. IEEE Trans. Instrum. Meas. 58(3), 502–505 (2009)

    Article  Google Scholar 

  2. A. Alikhani, A. Ahmadi, A novel current-mode four-quadrant CMOS analog multiplier/divider. Int. J. Electron. Commun. (AEÜ) 66, 581–586 (2012)

    Article  Google Scholar 

  3. R.J. Baker, CMOS Circuit Design, Layout and Simulation, 3rd edn. (Wiley, New York, 2010)

    Book  Google Scholar 

  4. R. Chaisricharoen, B. Chipipop, B. Sirinaovakul, CMOS CCCII: structures, characteristics, and considerations. Int. J. Electron. Commun. (AEÜ) 64, 540–557 (2010)

    Article  Google Scholar 

  5. C.A. De La Cruz-Blas, A.J. Lopez-Martin, A. Carlosena, J. Ramirez-Angulo, 1.5 V current-mode CMOS true RMS-DC converter based on class-AB transconductors. IEEE Trans. Circuits Syst. II Express Briefs 52(7), 376–379 (2005)

    Article  Google Scholar 

  6. DSCA 33 Isolated True RMS Input Module, Application Note AN101 (Dataforth Corporation, A Burr-Brown Company, USA, 2011)

  7. M. Eskiyerli, A.J. Payne, Square root domain filter design and performance. Analog Integr. Circuits Signal Process. 22, 231–243 (2000)

    Article  Google Scholar 

  8. E. Farshidi, H. Asiaban, A new true RMS-to-DC converter using up-down translinear loop in CMOS technology. Analog Integr. Circuits Signal Process. 70(3), 385–390 (2012)

    Article  Google Scholar 

  9. E. Farshidi, S. M. Sayedi, A micropower multi decade dynamic range current-mode true RMS-to-DC converter, in Proceedings of IEEE Northeast Workshop on Circuits and Systems (NEWCAS), (2007), pp. 1493–1496

  10. E. Farshidi, S.M. Sayedi, A 1.2 V current-mode true RMS-DC converter based on the floating gate MOS translinear principle. Microelectron. J. 39(2), 293–298 (2008)

    Article  Google Scholar 

  11. H. Germer, High-precision AC measurements using the Monte-Carlo method. IEEE Trans. Instrum. Meas. 50(2), 457–460 (2001)

    Article  Google Scholar 

  12. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th edn. (Wiley, New York, 2009)

    Google Scholar 

  13. JCGM 100:2008, Evaluation of measurement data–Guide to the expression of uncertainty in measurement, Document produced by Working Group 1 of the Joint Committee for Guides in Metrology JCGM/WG 1, (BIPM, 2008)

  14. AD637 High Precision, Wide-Band RMS-to-DC Converter, Application Note AD637 (Analog Devices, USA, 2011)

  15. K. Kaewdang, K. Kumwachara, W. Surakampontorn, A simple wide-band CMOS based true rms-to-dc converter. Int. J. Electron. 91(7), 407–420 (2004)

    Article  Google Scholar 

  16. K. Kaewdang, K. Kumwachara, W. Surakampontorn, A translinear-based true RMS-to-DC converter using only npn BJTs. Int. J. Electron. Commun. (AEÜ) 63(6), 472–477 (2009)

    Article  Google Scholar 

  17. A.J. Lopez-Martin, A. Carlosena, A 1.5V current-mode CMOS RMS-to-DC converter. Analog. Integr. Circuits Signal Process. 36(1–2), 137–143 (2003)

    Article  Google Scholar 

  18. A.J. Lopez-Martin, A. Carlosena, A 1.5V CMOS companding filter. Electron. Lett. 38(22), 1346–1348 (2002)

    Article  Google Scholar 

  19. T. McConaghy, K. Breen, J. Dyck, A. Gupta, Variation–Aware Design of Custom Integrated Circuits: A Hands-on Field Guide (Springer, Berlin, 2013)

    Book  Google Scholar 

  20. S. Minaei, O.K. Sayin, H. Kuntman, A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Trans. Circuits Syst. I Regul. Papers 53(7), 1448–1457 (2006)

    Article  Google Scholar 

  21. J. Mulder, W.A. Serdijn, A.H.M. Roermund, An RMS-DC converter based on the dynamic translinear principle. IEEE Solid State Circuits 32, 1146–1150 (1997)

    Article  Google Scholar 

  22. M. Novotny, M. Sedlacek, RMS value measurement based on classical and modified digital signal processing algorithms. Measurement 41(3), 236–250 (2008)

    Article  Google Scholar 

  23. P. Petrović, I. Župunski, RMS detector of periodic, band-limited signals based on usage of DO-CCIIs. Measurement 46(9), 3073–3083 (2013)

    Article  Google Scholar 

  24. U. Pogliana, Precision measurement of ac voltage below 20 Hz at IEN. IEEE Trans. Instrum. Meas. 46(2), 369–372 (1997)

    Article  Google Scholar 

  25. B. Rumberg, D.W. Graham, A low-power magnitude detector for analysis of transient-rich signals. IEEE J. Solid State Circuits 47(3), 676–685 (2012)

    Article  Google Scholar 

  26. H. Schmid, Approximating the universal active element. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(11), 1160–1169 (2000)

    Article  Google Scholar 

  27. G. Serrano, P. Hasler, A precision low-TC wide-range CMOS current reference. IEEE J. Solid State Circuits 43(2), 558–565 (2008)

    Article  Google Scholar 

  28. M. Shaterian, C. Twigg, J. Azhari, MTL-based implementation of current-mode CMOS RMS-to-DC converters. Int. J. Circuit Appl. (2014). doi:10.1002/cta.1975

  29. LB-25 True RMS’ detector, Application Note AN008474, Literature Number: SNOA690, (National Semiconductor Corporation, Texas Instruments, USA, 2002)

  30. W.S. Wey, Y.C. Huang, A CMOS delta–sigma true RMS converter. IEEE J. Solid State Circuits 35(2), 248–257 (2000)

    Article  Google Scholar 

  31. Z. Yijun, A low-power ultra-wideband CMOS true RMS power detector. IEEE Trans. Microw. Theory Tech. 56(5), 1052–1058 (2008)

    Article  Google Scholar 

  32. E. Yuce, S. Minaei, S. Tokat, Root-mean-square measurement of distinct voltage signals. IEEE Trans. Instrum. Meas. 56(6), 2782–2787 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag B. Petrović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, P.B. New CMOS Current-Mode Analogue to Digital Power Converter. Circuits Syst Signal Process 36, 1361–1378 (2017). https://doi.org/10.1007/s00034-016-0372-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0372-x

Keywords

Navigation