Skip to main content
Log in

Design and Analysis of Cascaded LMS Adaptive Filters for Noise Cancellation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Adaptive filters have become active research area in the field of communication system. This paper investigates the innovative concept of adaptive noise cancellation (ANC) using cascaded form of least-mean-square (LMS) adaptive filters. The concept of cascading and its algorithm for real-time LMS-ANC are also described in detail. The model of the cascaded LMS-ANC is designed and simulated on MATLAB Simulink. The simulation model gives variation in the distinct signals of LMS-ANC like error, output and weights at various LMS filter parameters. The proposed algorithm utilizes two adaptive filters to estimate gradients accurately and results in good adaptation and performance. The objective of the present investigation is to provide solution in order to improve the performance of noise canceller in terms of filter parameters. The results are obtained with the help of adaptive algorithm with variable step size and different initial weight of filters which provides high convergence speed of error signal. This paper also includes the derivation for the convergence rate at different conditions and concludes that cascaded LMS-ANC results in higher convergence rate and better output signal as compared to single LMS-ANC. Higher signal-to-noise ratio for cascaded system is obtained for cascaded LMS-ANC as compared to that of single LMS-ANC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.S.E. Abadi, J. Husoy, Mean-square performance of adaptive filter algorithms in non-stationary environments. Int. J. Signal Process. 2, 182–188 (2008)

    Google Scholar 

  2. N. Ahmed, D. Hush, G.R. Elliot, R.J. Fogler, Detection of multiple sinusoids using an adaptive cascaded structure. IEEE Int. Conf. Acoust. Speech Signal Process. 9, 199–202 (1984)

    Google Scholar 

  3. D.J. Allred, H. Yoo, V. Krishnan, W. Huang, D.V. Anderson, LMS adaptive filters using distributed arithmetic for high throughput. IEEE Trans. Circuits Syst. I 52(7), 1327–1337 (2005)

    Article  Google Scholar 

  4. M. Baes, Digital Signal Processing with Field Programmable Gate Arrays (Springer, Berlin, 2007)

    Google Scholar 

  5. J. Brocker, U. Parlitz, M. Ogorzałek, Nonlinear noise reduction. Proc. IEEE 90(5), 898–918 (2002)

    Article  Google Scholar 

  6. S.G. Chen, Y.A. Kao, K.Y. Tsai, A new efficient LMS adaptive filtering algorithm. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 43(5), 372–378 (1996)

    Article  Google Scholar 

  7. M.R. Cowper, B. Mulgrew, in The application of a nonlinear inverse noise cancellation technique to maritime surveillance radar, 10th IEEE Workshop on Statistical Signal and Array Processing, (2000), pp. 267–271

  8. G.M. Davis, Noise Reduction in Speech Applications (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  9. S.C. Douglas, Performance comparison of two implementations of the leaky LMS adaptive filter. IEEE Trans. Signal Process. 45(8), 2125–2129 (1997)

    Article  Google Scholar 

  10. S.C. Douglas, W. Pan, Exact expectation analysis of the LMS adaptive filter. IEEE Trans. Signal Process. 43(12), 2863–2871 (1995)

    Article  Google Scholar 

  11. A.J. Efron, L.C. Han, Wide-area adaptive active noise cancellation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 41(6), 405–409 (1994)

    Article  Google Scholar 

  12. B.J. Farahani, M. Ismail, Adaptive noise cancellation techniques in sigma–delta analog-to-digital converters. IEEE Trans. Circuits Syst. I 54(9), 1891–1899 (2007)

    Article  Google Scholar 

  13. S.S. Godbole, P.M. Palsodkar, V.P. Raut, in FPGA implementation of adaptive LMS filter, Proceedings of SPIT-IEEE Colloquium and International Conference, India, (2), pp. 2226–2229

  14. D.Y. Huang, S. Rahardja, in The misadjustment of the cascaded LMS prediction filter, IEEE International Symposium on Circuits and Systems, (2009), pp. 2565–2568

  15. J.H. Husoy, M.S.E. Abadi, Unified approach to adaptive filters and their performance. IET Signal Proc. 2(2), 97–109 (2008)

    Article  MathSciNet  Google Scholar 

  16. M.N.S. Jahromi, A. Hocanin, O. Kukrer, M.S. Salman, in Two dimensional zero-attracting variable step-size LMS algorithm for sparse system identification, 21st Signal Processing and Communications Applications Conference, Haspolat, (2013), pp. 1–3

  17. N. Kalyanasundaram, P. Palanisamy, Target detection by adaptive noise cancellation. Electron. Lett. 44, 1–2 (2008)

    Article  Google Scholar 

  18. W. Kester, Mixed Signal and DSP Design Techniques (Newnes, 2003)

  19. J. Krolik, N. Joy, S. Pasupathy, M. Eizenman, A comparative study of the adaptive filter versus generalized correlation methods for time delay estimation. IEEE Int. Conf. Acoust. Speech Signal Process. 9, 652–655 (1984)

    Google Scholar 

  20. S.M. Kuo, B.H. Lee, Real Time Digital Signal Processing (Wiley, New York, 2001)

    Book  Google Scholar 

  21. T. Lan, J. Zhang, in FPGA implementation of an adaptive noise canceller, IEEE International Symposiums on Information Processing, (2008), pp. 553–558

  22. W.B. Lopes, C.G. Lopes, in Incremental combination of RLS and LMS adaptive filters in nonstationary scenarios, IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, (2013), pp. 5676–5680

  23. Z. Lu, G. Hu, X. Wang, L. Yang, in An improved adaptive Wiener filtering algorithm, International Conference on Signal Processing, (2006), pp. 1–4

  24. V.K. Madisetti, D.B. Williams, Digital Signal Processing Handbook (CRC Press, Boca Raton, 1999)

    Google Scholar 

  25. K. Matsubara, K. Nishikawa, H. Kiya, Pipelined LMS adaptive filter using a new look-ahead transformation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(1), 51–55 (1999)

    Article  Google Scholar 

  26. H. Modares, A. Ahmadyfard, M. Hadadzarif, in A PSO approach for non-linear active noise cancellation, Proceedings of the 6th WSEAS International Conference on Simulation, Modeling & Optimization, Lisbon, Portugal, (2006), pp. 492–497

  27. B. Mulgrewt, P. Strauchtt, in Nonlinear Dynamics and Noise Cancellation, The Institution of Electrical Engineers, 2/1-2/6 (1997)

  28. A.O. Ogunfunmi, in Performance analysis of a new implementation for the frequency-domain LMS adaptive filter, 34th Midwest Symposium on Circuits and Systems, (1991), pp. 501–504

  29. T.O. Onur, R. Hacioglu, in Adaptive echo and noise cancellation for car hands-free voice communication, 21st Signal Processing and Communications Applications Conference, (2013), pp. 1–4

  30. L. Rugini, G. Leus, in Basis expansion adaptive filters for time-varying system identification, 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, (2007), pp. 153–156

  31. G.K. Sang, D. Yoo Chang, Q. Nguyen Truong, Alias-free subband adaptive filtering with critical sampling. IEEE Trans. Signal Process. 56(5), 1894–1904 (2008)

    Article  MathSciNet  Google Scholar 

  32. G.J. Saulniert, P. Das., in Antijam spread spectrum receiver using LMS adaptive filtering techniques, IEEE Military Communications Conference, (1984), pp. 482–487

  33. G. Saxena, S. Ganesan, M. Das, in Real time implementation of adaptive noise cancellation, IEEE International Conference on Electro/Information Technology, (2008), pp. 431–436

  34. S.W. Smith, Digital Signal Processing (California Technical publishing, Poway, 1999)

    Google Scholar 

  35. S. Stergiopoulos, Advanced Digital Signal Processing Handbook (CRC Press, Boca Raton, 2001)

    Google Scholar 

  36. P. Strobach, Low rank adaptive filters. IEEE Trans. Signal Process. 44(12), 2832–2947 (1996)

    Article  MathSciNet  Google Scholar 

  37. X. Sun, S.M. Kuo, Active narrowband noise control systems using cascading adaptive filters. IEEE Trans. Audio Speech Lang. Process. 15(2), 586–592 (2007)

    Article  Google Scholar 

  38. L. Tao, H.K. Kwan, in A neural network method for adaptive noise cancellation, IEEE International Symposium on Circuits and Systems, (1999), pp. 567–570

  39. J. Tapia, S.M. Kuo, in An optimized automatic gain controller for real-time recursive LMS adaptive filters, IEEE International Symposium on Circuits and Systems, (1990), pp. 3154–3157

  40. R.J. Tony, RF and Digital Signal Processing for Software-Defined Radio, 1st edn. (Newnes, 2008)

  41. Z. Udo, Digital Audio Signal Processing (Wiley, New York, 2008)

    Google Scholar 

  42. E. Ugur, M. Secmen, N. Ozkurt, in The comparison of LMS based algorithms for active cancellation of motor noise, 21st Signal Processing and Communications Applications Conference, Haspolat, (2013), pp. 1–4

  43. S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiely, New York, 2000)

    Google Scholar 

  44. B. Widrow, J.R. Glover, J.M. Mccool, J. Kaunitz, C.S. Williams, R.H. Hean, J.R. Zeidler, E. Dong, R.C. Goodlin, Adaptive noise cancelling: principles and applications. Proc. IEEE 63(12), 1692–1716 (1975)

    Article  Google Scholar 

  45. Y. Xia, L. Jianchang, L. Hongru, in Performance analysis of adaptive filters for time-varying systems, 32nd Chinese Control Conference, Xi’an, (2013), pp. 8572–8575

  46. J. Yuzhong, R.Y.P. Cheung, W.W.Y. Chow, M.P.C. Mok, in A novel gradient adaptive step size LMS algorithm with dual adaptive filters, 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, (2013), pp. 4803–4806

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhra Dixit.

Appendix: Step-size positions

Appendix: Step-size positions

Step-size position

Step size of first LMS filter (\(\upmu _{1})\)

Step size of second LMS filter (\(\upmu _{2})\)

1

1

1

2

0.9

1

3

0.8

1

4

0.7

1

5

0.6

1

6

0.5

1

7

0.4

1

8

0.3

1

9

0.2

1

10

0.1

1

11

0.05

1

12

1

0.9

13

0.9

0.9

14

0.8

0.9

15

0.7

0.9

16

0.6

0.9

17

0.5

0.9

18

0.4

0.9

19

0.3

0.9

20

0.2

0.9

21

0.1

0.9

22

0.05

0.9

23

1

0.8

24

0.9

0.8

25

0.8

0.8

26

0.7

0.8

27

0.6

0.8

28

0.5

0.8

29

0.4

0.8

30

0.3

0.8

31

0.2

0.8

32

0.1

0.8

33

0.05

0.8

34

1

0.7

35

0.9

0.7

36

0.8

0.7

37

0.7

0.7

38

0.6

0.7

39

0.5

0.7

40

0.4

0.7

41

0.3

0.7

42

0.2

0.7

43

0.1

0.7

44

0.05

0.7

45

1

0.6

46

0.9

0.6

47

0.8

0.6

48

0.7

0.6

49

0.6

0.6

50

0.5

0.6

51

0.4

0.6

52

0.3

0.6

53

0.2

0.6

54

0.1

0.6

55

0.05

0.6

56

1

0.5

57

0.9

0.5

58

0.8

0.5

59

0.7

0.5

60

0.6

0.5

61

0.5

0.5

62

0.4

0.5

63

0.3

0.5

64

0.2

0.5

65

0.1

0.5

66

0.05

0.5

67

1

0.4

68

0.9

0.4

69

0.8

0.4

70

0.7

0.4

71

0.6

0.4

72

0.5

0.4

73

0.4

0.4

74

0.3

0.4

75

0.2

0.4

76

0.1

0.4

77

0.05

0.4

78

1

0.3

79

0.9

0.3

80

0.8

0.3

81

0.7

0.3

82

0.6

0.3

83

0.5

0.3

84

0.4

0.3

85

0.3

0.3

86

0.2

0.3

87

0.1

0.3

88

0.05

0.3

89

1

0.2

90

0.9

0.2

91

0.8

0.2

92

0.7

0.2

93

0.6

0.2

94

0.5

0.2

95

0.4

0.2

96

0.3

0.2

97

0.2

0.2

98

0.1

0.2

99

0.05

0.2

100

1

0.1

101

0.9

0.1

102

0.8

0.1

103

0.7

0.1

104

0.6

0.1

105

0.5

0.1

106

0.4

0.1

107

0.3

0.1

108

0.2

0.1

109

0.1

0.1

110

0.05

0.1

111

1

0.05

112

0.9

0.05

113

0.8

0.05

114

0.7

0.05

115

0.6

0.05

116

0.5

0.05

117

0.4

0.05

118

0.3

0.05

119

0.2

0.05

120

0.1

0.05

121

0.05

0.05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, S., Nagaria, D. Design and Analysis of Cascaded LMS Adaptive Filters for Noise Cancellation. Circuits Syst Signal Process 36, 742–766 (2017). https://doi.org/10.1007/s00034-016-0332-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0332-5

Keywords

Navigation