Skip to main content
Log in

A Dual-Wideband CMOS LNA Using Gain–Bandwidth Product Optimization Technique

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a dual-wideband, common-gate, cascode low-noise amplifier (LNA) using gain–bandwidth product optimization technique. This approach shrinks the aspect ratio of the cascode MOS device, thereby reducing the equivalent parasitic capacitance of the resonator load to optimize the gain–bandwidth product of the LNA. The input impedance of the proposed LNA is analyzed, and the noise factor is well predicted through analytical equations. Measurement results that show well agreement with post-simulation results demonstrate the feasibility of this technique. In low-band mode, experimental results presented a maximum \(\left| S_{21} \right| \) of 13.4 dB over a \(-\)3-dB bandwidth of 3.1–4.8 GHz with a minimum noise figure of 4.5 dB. In high-band mode, the proposed LNA achieved a maximum \(\left| S_{21} \right| \) of 13.6 dB with a minimum noise figure of 6.2 dB over a \(-\)3-dB bandwidth of 7.3–9.4 GHz. A test chip with a die area of 0.83 mm\(^{2}\) was fabricated using a 0.18 \(\upmu \)m CMOS process. The proposed dual-wideband LNA consumes 9.1 mW, excluding the buffer, from a supply voltage of 1.8 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Cho, J. Bae, H.J. Yoo, A 10.8 mW body channel communication/MICS dual-band transceiver for a unified body sensor network controller. IEEE J. Solid State Circuits 44(12), 3459–3468 (2009)

    Article  Google Scholar 

  2. G.Z. Fatin, Z.D. Koozehkanani, H. Sjöland, A 90 nm CMOS +11 dBm IIP3 4 mW dual-band LNA for cellular handsets. IEEE Microw. Wirel. Compon. Lett. 20(9), 513–515 (2010)

    Article  Google Scholar 

  3. Y. Gao, Y.J. Zheng, B.L. Ooi, 0.18 \(\upmu \)m CMOS dual-band UWB LNA with interference rejection. Electron. Lett. 43(20), 1096–1098 (2007)

    Article  Google Scholar 

  4. H. Hashemi, A. Hajimiri, Concurrent multiband low-noise amplifiers—theory, design, and applications. IEEE Trans. Microw Theory Tech. 50(1), 288–301 (2002)

    Article  Google Scholar 

  5. P. Heydari, Design and analysis of a performance-optimized CMOS UWB distributed LNA. IEEE J. Solid State Circuits 42(9), 1892–1905 (2007)

    Article  Google Scholar 

  6. Z.Y. Huang, C.C. Hung, CMOS dual-band low-noise amplifier for world-wide WiMedia ultra-wideband wireless personal area networks system. in Proceeding of Asia-Pacific Microwave Conference, 2010 pp. 334–337

  7. H.B. Kia, A.K. A’ain, I. Grout, I. Kamisian, A reconfigurable low-noise amplifier using a tunable active inductor for multistandard receivers. Circuits Syst. Signal Process. 32, 979–992 (2013)

    Article  Google Scholar 

  8. T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  9. Z. Li, R. Quintal, K.O. Kenneth, A dual-band CMOS front-end with two gain modes for wireless LAN applications. IEEE J. Solid State Circuits 39(11), 2069–2073 (2004)

    Article  Google Scholar 

  10. J.Y. Lin, H.K. Chiou, Power-constrained third-order active notch filter applied in IR-LNA for UWB standards. IEEE Trans. Circuits Syst. II: Express Briefs 58(1), 11–15 (2011)

    Article  Google Scholar 

  11. L.H. Lu, H.H. Hsieh, Y.S. Wang, A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier. IEEE Microw. Wirel. Compon. Lett. 15(10), 685–687 (2005)

    Article  Google Scholar 

  12. M.A. Martins, K. van Hartingsveldt, J.R. Fernandes, M.M. Silva, C.J.M. Verhoeven, Low noise amplifiers with double loop feedback. Circuits Syst. Signal Process. 32, 541–558 (2013)

    Article  MathSciNet  Google Scholar 

  13. N.M. Neihart, J. Brown, X. Yu, A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network. IEEE Trans. Circuits Syst. I: Regul. Pap. 59(8), 1743–1751 (2012)

    Article  MathSciNet  Google Scholar 

  14. B. Park, S. Choi, S. Hong, A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems. IEEE Microw. Wirel. Compon. Lett. 20(1), 40–42 (2010)

    Article  Google Scholar 

  15. Md.M. Reja, K. Moez, I. Filanovsky, An area-efficient multistage 3.0- to 8.5-GHz CMOS UWB LNA using tunable active inductors. IEEE Trans. Circuits Syst. II: Express Briefs 57(8), 587–591 (2010)

  16. N. Shiramizu, T. Masuda, M. Tanabe, K. Washio, A 3-10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in 0.25-\(\upmu \)m SiGe BiCMOS technology. in IEEE Radio Frequency Integrated Circuits Symposium, 2005, pp. 39–42

  17. H. Song, H. Kim, K. Han, J. Choi, C. Park, B. Kim, A sub-2 dB NF dual-band CMOS LNA for CDMA/WCDMA applications. IEEE Microw. Wirel. Compon. Lett. 18(3), 212–214 (2008)

    Article  Google Scholar 

  18. G.M. Sung, X.J. Zhang, A 2.4-GHz/5.25-GHz CMOS variable gain low noise amplifier using gate voltage adjustment. in IEEE International Midwest Symposium on Circuits and Systems, 2013, pp. 776–779

  19. X. Tang, F. Huang, Y. Zhang, S. Lin, Design of a reconfigurable low noise amplifier for IMT-A and UWB systems. in IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 2012, pp. 1–4

  20. T.K.K. Tsang, M.N. El-Gamal, Dual-band sub-1V CMOS LNA for 802.11a/b WLAN applications. in IEEE International Symposium on Circuits and Systems, I-217-I-220 2003

  21. A. Vallese, A. Bevilacqua, C. Sandner, M. Tiebout, A. Gerosa, A. Neviani, Analysis and design of an integrated notch filter for the rejection of interference in UWB systems. IEEE J. Solid State Circuits 44(2), 331–343 (2009)

    Article  Google Scholar 

  22. K. Xuan, K.F. Tsang, W.C. Lee, S.C. Lee, 0.18 \(\upmu \)m CMOS dual-band low-noise amplifier for ZigBee development. Electron. Lett. 46(1), 85–86 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Chieh Chen.

Additional information

The authors would like to thank the Chung Yuan Christian University for financial support, and thank National Chip Implementation Center (CIC), Hsin-Chu, Taiwan, for chip fabrication and measurement support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CC., Wang, YC. A Dual-Wideband CMOS LNA Using Gain–Bandwidth Product Optimization Technique. Circuits Syst Signal Process 36, 495–510 (2017). https://doi.org/10.1007/s00034-016-0322-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0322-7

Keywords

Navigation