Skip to main content
Log in

Asymptotic Solutions and Circuit Implementations of a Rayleigh Oscillator Including Cubic Fractional Damping Terms

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a fractional-order Rayleigh oscillator model, which involves a cubic damping term described by fractional derivatives. The presence of such fractional damping term makes the analysis more difficult. A two-scale expansion method is employed for asymptotic solutions of the fractional-order Rayleigh oscillator. Then, an example is provided to compare the asymptotic solutions with the numerical solutions. The numerical results demonstrate the validity and applicability of the proposed method to solve fractional differential equations with high order fractional terms. Furthermore, an electronic circuit is designed to realize the fractional-order Rayleigh oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.M. Ahmad, J.C. Sprott, Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fract. 16(2), 339–351 (2003)

    Article  MATH  Google Scholar 

  2. A. Alexopoulos, G.V. Weinberg, Fractional-order formulation of power-law and exponential distributions. Phys. Lett. A 378(34), 2478–2481 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.A.M. Arafa, S.Z. Rida, M. Khalil, The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model. Appl. Math. Model. 37(4), 2189–2196 (2013)

    Article  MathSciNet  Google Scholar 

  4. R.S. Barbosa, J.A.T. Machado, B.M. Vinagre, A.J. Calderon, Analysis of the van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13(9–10), 1291–1301 (2007)

    Article  MATH  Google Scholar 

  5. S. Chatterjee, S. Dey, Nonlinear dynamics of two harmonic oscillators coupled by Rayleigh type self-exciting force. Nonlinear Dyn. 72(1–2), 113–128 (2013)

    Article  MathSciNet  Google Scholar 

  6. D.Y. Chen, C.F. Liu, C. Wu, Y. Liu, X. Ma, Y. You, A new fractional-order chaotic system and its synchronization with circuit simulation. Circuits Syst. Signal Process. 31(5), 1599–1613 (2012)

    Article  MathSciNet  Google Scholar 

  7. G.P. Chen, Y. Yang, Robust finite-time stability of fractional order linear time-varying impulsive systems. Circuits Syst. Signal Process. 34(4), 1325–1341 (2015)

    Article  MathSciNet  Google Scholar 

  8. A.C. de Pina, M.S. Dutra, L.S.C. Raptopoulos, Modeling of a bipedal robot using mutually coupled Rayleigh oscillators. Biol. Cybern. 92(1), 1–7 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Diethelm, N.J. Ford, A.D. Freed, A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. T.J. Freeborn, A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Selected Topics Circuits Syst. 3(3), 416–424 (2013)

    Article  Google Scholar 

  11. S. Ghosh, D.S. Ray, Chemical oscillator as a generalized Rayleigh oscillator. J. Chem. Phys. 139(16), 164112 (2013)

    Article  Google Scholar 

  12. Z.J. Guo, A.Y.T. Leung, H.X. Yang, Oscillatory region and asymptotic solution of fractional van der Pol oscillator via residue harmonic balance technique. Appl. Math. Model. 35(8), 3918–3925 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Hasegawa, Jarzynski equality in van der Pol and Rayleigh oscillators. Phys. Rev. E 84(6), 061112 (2011)

    Article  Google Scholar 

  14. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  15. N. Inaba, S. Mori, Folded torus breakdown in the forced Rayleigh oscillator with a diode pair. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl 39(5), 402–411 (1992)

    Article  MATH  Google Scholar 

  16. H.Y. Jia, Z.Q. Chen, G.Y. Qi, Chaotic characteristics analysis and circuit implementation for a fractional-order system. IEEE Trans. Circuits Syst. I. Regul. Pap 61(3), 845–853 (2014)

    Article  Google Scholar 

  17. B.Z. Kaplan, Y. Horen, Switching-mode counterparts of the Rayleigh and Van-der-Pol oscillators. Int. J. Circuits Theor. Appl. 28(1), 31–49 (2000)

    Article  MATH  Google Scholar 

  18. M. Khan, S.H. Ali, C. Fetecau, H. Qi, Decay of potential vortex for a viscoelastic fluid with fractional. Appl. Math. Model. 33(5), 2526–2533 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Kovacic, M. Zukovic, Oscillators with a power-form restoring force and fractional derivative damping: application of averaging. Mech. Res. Commun. 41, 37–43 (2012)

    Article  Google Scholar 

  20. C.A.K. Kwuimy, B.R.N. Nbendjo, Active control of horseshoes chaos in a driven Rayleigh oscillator with fractional order deflection. Phys. Lett. A 375(39), 3442–3449 (2011)

    Article  MATH  Google Scholar 

  21. C. Letellier, L.A. Aguirre, Dynamical analysis of fractional-order Rossler and modified Lorenz systems. Phys. Lett. A 377(28–30), 1707–1719 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. A.Y.T. Leung, Z.J. Guo, H.Y. Yang, Fractional derivative and time delay damper characteristics in Duffing–van der Pol oscillators. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2900–2915 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.Y.T. Leung, H.Y. Yang, P. Zhu, Periodic bifurcation of Duffing–van der Pol oscillators having fractional derivatives and time delay. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1142–1155 (2014)

    Article  MathSciNet  Google Scholar 

  24. F.R.S. Lord Rayleigh, On maintained vibrations. Philos. Mag. 15, 229–235 (1883)

    Article  MATH  Google Scholar 

  25. E. Naseri et al., Solving linear fractional-order differential equations via the enhanced homotopy perturbation method. Phys. Scr. T136, 014035 (2009)

    Article  Google Scholar 

  26. P.S.V. Nataraj, R. Kalla, Computation of limit cycles for uncertain nonlinear fractional-order systems. Phys. Scr. T136, 014021 (2009)

    Article  Google Scholar 

  27. I. N’Doye, H. Voos, M. Darouach, Observer-based approach for fractional-order chaotic synchronization and secure communication. IEEE J. Emerg. Selected Topics Circuits Syst. 3(3), 442–450 (2013)

    Article  MathSciNet  Google Scholar 

  28. A. Pálfalvi, Efficient solution of a vibration equation involving fractional derivatives. Int. J. Non-Linear Mech. 45(2), 169–175 (2010)

    Article  Google Scholar 

  29. I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, London, 2011)

    Book  MATH  Google Scholar 

  30. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  31. A.G. Radwan, K.N. Salama, Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31(6), 1901–1905 (2012)

    Article  MathSciNet  Google Scholar 

  32. M. Rostami, M. Haeri, Study of limit cycles and stability analysis of fractional Arneodo oscillator. J. Optimiz. Theory App. 156(1), 68–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Rostami, M. Haeri, Undamped oscillations in fractional-order Duffing oscillator. Signal Process. 107, 361–367 (2014)

    Article  Google Scholar 

  34. M.S. Siewe, C. Tchawoua, S. Rajasekar, Parametric resonance in the Rayleigh–Duffing oscillator with time-delayed feedback. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4485–4493 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. M.S. Tavazoei, M. Haeri, M. Siami, S. Bolouki, Maximum number of frequencies in oscillations generated by fractional order LTI systems. IEEE Trans. Signal Process. 58(8), 4003–4012 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. H.H. Wang, K.H. Sun, S.B. He, Dynamic analysis and implementation of a digital signal processor of a fractional-order Lorenz–Stenflo system based on the Adomian decomposition method. Phys. Scr. 90(1), 015206 (2015)

    Article  Google Scholar 

  37. M. Xiao, W.X. Zheng, J.D. Cao, Approximate expressions of a fractional order Van der Pol oscillator by the residue harmonic balance method. Math. Comput. Simul. 89, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  38. M. Xiao, W.X. Zheng, G.P. Jiang, J.D. Cao, Undamped oscillations generated by Hopf bifurcations in fractional-order recurrent neural networks with Caputo derivative. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3201–3214 (2015)

    Article  Google Scholar 

  39. F. Xie, X. Lin, Asymptotic solution of the van der Pol oscillator with small fractional damping. Phys. Scr. T136, 014033 (2009)

    Article  Google Scholar 

  40. Z. Xu, C.X. Liu, T. Yang, Controlling fractional-order new chaotic system based on Lyapunov equation. Acta Phys. Sin. 59(3), 1524–1531 (2010)

    MathSciNet  MATH  Google Scholar 

  41. J.H. Yang, H. Zhu, Bifurcation and resonance induced by fractional-order damping and time delay feedback in a Duffing system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1316–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Zhou, K. Huang, A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2005–2011 (2014)

    Article  MathSciNet  Google Scholar 

  43. M. Zolfaghari et al., Application of the enhanced homotopy perturbation method to solve the fractional-order Bagley–Torvik differential equation. Phys. Scr. T136, 014032 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61573194, Grant 61203232, Grant 61374180 and Grant 615573096, in part by the China Post-Doctoral Science Foundation under Grant 2013M530229, in part by the China Post-Doctoral Science Special Foundation under Grant 2014T70463, in part by the ‘Six Talent Peaks’ High Level Project of Jiangsu Province, China, under Grant ZNDW-004, in part by the Science Foundation of Nanjing University of Posts and Telecommunications under Grant NY213095 and in part by the 1311 Talents Project through the Nanjing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Jiang, G. & Cao, J. Asymptotic Solutions and Circuit Implementations of a Rayleigh Oscillator Including Cubic Fractional Damping Terms. Circuits Syst Signal Process 35, 2041–2053 (2016). https://doi.org/10.1007/s00034-016-0268-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0268-9

Keywords

Navigation