Skip to main content
Log in

Design and Realization of Stand-Alone Digital Fractional Order PID Controller for Buck Converter Fed DC Motor

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The aim of paper is to employ digital fractional order proportional integral derivative (FO-PID) controller for speed control of buck converter fed DC motor. Optimal pole-zero approximation method in discrete form is proposed for realization of digital fractional order controller. The stand-alone controller is implemented on embedded platform using digital signal processor TMS320F28027. The five tuning parameters of controller enhance the performance of control scheme. For tuning of the controller parameters, dynamic particle swarm optimization technique is employed. The proposed control scheme is simulated on MATLAB and verified by experimental results. Performance comparison shows better speed control of separately excited DC motor with the realized digital FO-PID controller than that of the integer order PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. M.A. Ahmad, R.M.T. Raja Ismail, M.S. Ramli, Control strategy of buck converter driven DC motor: a comparative assessment. Aust. J. Basic Appl. Sci. 4(10), 4893–4903 (2010)

    Google Scholar 

  2. K. Astrom, T. Hagglund, PID Controllers: Theory, Design and Tuning (Instrument Society of America, North Carolina, 1995)

    Google Scholar 

  3. A.Q.H. Badar, B.S. Umre, A.S. Junghare, Reactive power control using dynamic particle swarm optimization for real power loss minimization. Electr. Power Energy Syst. 41, 133–136 (2012)

    Article  Google Scholar 

  4. S.J. Bassi, M.K. Mishra, E.E. Omizegba, Automatic tuning of proportional integral derivative (PID) controller using particle swarm optimization (PSO) algorithm. Int. J. Artif. Intell. Appl. 2(4), 25–34 (2011)

    Google Scholar 

  5. A. Charef, H.H. Sun, Y.Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Chen, Y.Q. Chen, D. Xue, Digital fractional order Savitzky–Golay differentiator. IEEE Trans. Circuits Syst. II Express Briefs 58(11), 758–762 (2011)

    Article  Google Scholar 

  7. Y.Q. Chen, K.L. Moore, Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  8. S. Das, Functional Fractional Calculus for System Identification and Controls (Springer, Berlin, 2007)

    Google Scholar 

  9. S. Das, Functional Fractional Calculus, 2nd edn. (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  10. A. Dhabale, R. Dive, M.V. Aware, S. Das, A new method for getting rational approximation for fractional order differintegrals. Asian J. Control 18(4), 1–10 (2016). doi:10.1002/asjc.1148

    MathSciNet  Google Scholar 

  11. G.K. Dubey, Fundamentals of Electrical Drives (Narosa Publishing Home, New Delhi, 2009)

    Google Scholar 

  12. R. Duma, P. Dobra, M. Trusca, Embedded application of fractional order control. Electron. Lett. 48(24), 1526–1528 (2012)

    Article  Google Scholar 

  13. M.O. Effe, Fractional order systems in industrial automation—a survey. IEEE Trans. Ind. Inform. 7(4), 582–591 (2011)

    Article  Google Scholar 

  14. H. El Fadil, F. Giri, Accounting of DC–DC power converter dynamicsin DC motor velocity adaptive control, in Proceedings of the IEEE International Conference on Control Applications, Munich, Germany, Oct. 4–6, pp. 3157–3162 (2006)

  15. J.P. Jiang, S. Chen, P.K. Sinha, Optimal feedback control of direct-current motors. IEEE Trans. Ind. Electron. 37(4), 269–274 (1990)

    Article  Google Scholar 

  16. M.T. Kakhki, M. Haeri, M.S. Tavazoei, Study on control input energy efficiency of fractional order control systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 475–482 (2013)

    Article  Google Scholar 

  17. P. Lanusse, J. Sabatier, A. Oustaloup, fractional order PID and first generation CRONE control system design, in Fractional Order Differentiation and Robust Control Design, Intelligent Systems, Control and Automation: Science and Engineering—Chapter 2, vol. 77 (Springer, Berlin, 2015). doi:10.1007/978-94-017-9807-5-2

  18. J.A.T. Machado, Discrete-time fractional-order controllers. Fract. Calc. Appl. 4(1), 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  19. W. Mitkowski, K. Oprzedkiewicz, Tuning of the half-order robust PID controller dedicated to oriented PV system, in Advances in Modeling and Control of Non-integer Order Systems, Lecture Notes in Electrical Engineering, vol. 320, pp. 145–157. doi:10.1007/978-3-319-09900-2-14

  20. C.A. Monje, B.M. Vinagre, V. Feliu, Y.Q. Chen, Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16, 798–812 (2008)

    Article  Google Scholar 

  21. C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls. Fundam. Appl. (2010). doi:10.1007/978-1-84996-335-0

  22. R.S. Ortigoza, V.M.H. Guzman, M.A. Cruz, D.M. Carrillo, DC/DC buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Trans. Power Electron. 30(2), 1076–1084 (2015)

    Article  Google Scholar 

  23. A. Oustaloup, F. Levron, B. Mathiew, F. Nanot, Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  24. F. Padula, A. Visioli, Optimal tuning rules for proportional-integral derivative and fractional-order proportional-integral derivative controllers for integral and unstable processes. IET Control Theory Appl. 6(6), 776–786 (2012)

    Article  MathSciNet  Google Scholar 

  25. I. Pan, S. Das, Fractional order controller tuning using swarm and evolutionary algorithms, in Intelligent Fractional Order Systems and Control—Chapter 4, SCI 438 (Springer, Berlin, 2013), pp. 87–131

  26. I. Pan, S. Das, Gain and order scheduling for fractional order controllers, in Intelligent Fractional Order Systems and Control—Chapter 6, SCI 438 (Springer, Berlin, 2013), pp. 147–157

  27. M. Pant, R. Thangaraj, A. Abraham, Particle swarm optimization: performance tuning and empirical analysis, in Foundations of Computational Intelligence, SCI 203, vol. 3 (Springer, Berlin, 2009) pp. 101–128

  28. I. Petras, Fractional-order feedback control of a dc motor. J. Electr. Eng. 60(3), 117–128 (2009)

    MathSciNet  Google Scholar 

  29. I. Petras, Fractional Order Non Linear Systems: Modeling, Analysis and Simulation (Higher Education Press, Springer, Beijing, 2011)

    Book  MATH  Google Scholar 

  30. I. Podlubny, Fractional-order systems and \(PI^\lambda D^\mu \)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  32. H.S. Ramirez, M.A.O. Salazar, On the robust control of buck-converter DC-motor combinations. IEEE Trans. Power Electron. 28(8), 3912–3922 (2013)

    Article  Google Scholar 

  33. M.Z.M. Tumari, M.S. Saealal, M.R. Ghazali, Y.A. Wahab, H infinity with pole placement constraint in LMI region for a buck-converter driven DC motor, in Proceedings of the IEEE International Confence Power Energy, Kota KinabaluSabah, Malaysia, Dec. 2–5, pp. 530–535 (2012)

  34. D. Valerio, J. Sa da Costa, Introduction to single-input, single-output fractional control. IET Control Theory Appl. 5(8), 1033–1057 (2011)

    Article  MathSciNet  Google Scholar 

  35. B.M. Vinagre, I. Podlubny, A. Hernandez, A. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  36. D. Xue, C. Zhao, Y.Q. Chen, Fractional order PID control of a DC motor with elastic shaft: A case study, in Proceedings of the American Control Conference, Minneapolis, Minnesota, USA, June 14–16, pp. 3182–3187 (2006)

  37. J. Yao, Z. Jiao, D. Ma, RISE-based precision motion control of DC motors with continuous friction compensation. IEEE Trans. Ind. Electron. 61(12), 7067–7075 (2014)

    Article  Google Scholar 

  38. C. Yerogl, N. Tan, Note on fractional order proportional integral differential controller design. IET Control Theory Appl 5(17), 1978–1989 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support provided by the Board of Research of Nuclear sciences of the Department of Atomic Energy, India, under the BRNS Project Sanction No. BRNS 2012/36/69-2951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnil Khubalkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khubalkar, S., Chopade, A., Junghare, A. et al. Design and Realization of Stand-Alone Digital Fractional Order PID Controller for Buck Converter Fed DC Motor. Circuits Syst Signal Process 35, 2189–2211 (2016). https://doi.org/10.1007/s00034-016-0262-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0262-2

Keywords

Navigation