Skip to main content
Log in

Memory-Reduced Maximum A Posteriori Probability Decoding for High-Throughput Parallel Turbo Decoders

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Wireless communication standards make use of parallel turbo decoder for higher data rate at the cost of large hardware resources. This paper presents a memory-reduced back-trace technique, which is based on a new method of estimating backward-recursion factors, for the maximum a posteriori probability (MAP) decoding. Mathematical reformulations of branch-metric equations are performed to reduce the memory requirement of branch metrics for each trellis stage. Subsequently, an architecture of MAP decoder and its scheduling based on the proposed back trace as well as branch-metric reformulation are presented in this work. Comparative analysis of bit-error-rate (BER) performances in additive white Gaussian noise channel environment for MAP as well as parallel turbo decoders are carried out. It has shown that a MAP decoder with a code rate of 1/2 and a parallel turbo decoder with a code rate of 1/3 have achieved coding gains of 1.28 dB at a BER of 10\(^{-5}\) and of 0.4 dB at a BER of 10\(^{-4}\), respectively. In order to meet high-data-rate benchmarks of recently deployed wireless communication standards, very large scale integration implementations of parallel turbo decoder with 8–64 MAP decoders have been reported. Thereby, savings of hardware resources by such parallel turbo decoders based on the suggested memory-reduced techniques are accounted in terms of complementary metal oxide semiconductor transistor count. It has shown that the parallel turbo decoder with 32 and 64 MAP decoders has shown hardware savings of 34 and 44 % respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Benkeser, Power efficiency and the mapping of communication algorithms into VLSI. Masters thesis, ETH Zurich, Switzerland, (2010)

  2. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: turbo-codes, in Proceedings of the International Conference Communications, pp. 1064–1070 (1993)

  3. C. Benkeser, A. Burg, T. Cupaiuolo, Q. Huang, Design and optimization of an HSDPA turbo decoder ASIC. IEEE J. Solid State Circuits 44, 98–106 (2009)

    Article  Google Scholar 

  4. L. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory 20, 284–287 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, Soft-output decoding algorithms in iterative decoding of turbo codes. in Report JPL TDA Progress, pp. 42–124 (1996)

  6. M. Cheol, I.-C. Park, SIMD processor-based turbo decoder supporting multiple third-generation wireless standards. Journal 15, 801–810 (2007)

    Google Scholar 

  7. R. Dobkin, M. Peleg, R. Ginosar, Parallel VLSI architecture for MAP turbo decoder, in Proceedings of the IEEE International Symposium Personal, Indoor Mobile Radio Communication, pp. 15–18 (2002)

  8. G.D. Forney Jr, The viterbi algorithm. Proc. IEEE 61, 268–278 (2005)

    Article  MathSciNet  Google Scholar 

  9. J.F. Hayes, T.M. Cover, J.B. Riera, Optimal sequence detection and optimal symbol-by-symbol detection: similar algorithms. IEEE Trans. Commun. 30, 152–157 (1982)

    Article  MATH  Google Scholar 

  10. J. Hagenauer, P. Hoeher, A Viterbi Algorithm with Soft-Decision Outputs and its Applications, Proceedings of the 3rd IEEE Global Telecommunication Conference, Dallas, TX, pp. 1680–1686 (1989)

  11. L. Hanzo, T.H. Liew, B.L. Yeap, Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels (Wiley, England, 2003)

    Google Scholar 

  12. S.M. Karim, I. Chakrabarti, High throughput turbo decoder using pipelined parallel architecture and collision free interleaver. IET Commun. 6, 1416–1424 (2012)

    Article  Google Scholar 

  13. S. Kumawat, R. Shrestha, N. Daga, R.P. Paily, High-throughput LDPC-decoder architecture using efficient comparison techniques and dynamic multi-frame processing schedule. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 1421–1430 (2015)

    Article  MathSciNet  Google Scholar 

  14. J.P. Kulkarni, K. Kim, K. Roy, A 160 mV robust schmitt trigger based subthreshold SRAM. IEEE J. Solid State Circuits 42, 2303–2313 (2007)

    Article  Google Scholar 

  15. L. Lee, Real-time minimal-bit-error probability decoding of convolutional codes. IEEE Trans. Commun. 22, 146–151 (1974)

    Article  MathSciNet  Google Scholar 

  16. C.-C. Lin, Y.-H. Shih, H.-C. Chang, C.-Y. Lee, A low power turbo/viterbi decoder for 3GPP2 applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14, 426–430 (2006)

    Article  Google Scholar 

  17. C.-H. Lin, C.-Y. Chen, T.-H. Tsai, A.-Y. Wu, Low-power memory-reduced traceback MAP decoding for double-binary convolutional turbo decoder. IEEE Trans. Circuits Syst. I Reg. Pap. 56, 1005–1016 (2009)

    Article  MathSciNet  Google Scholar 

  18. Y. Li, B. Vucetic, Y. Sato, Optimum soft-output detection for channels with intersymbol interference. IEEE Trans. Inf. Theory 41, 704–713 (1995)

    Article  MATH  Google Scholar 

  19. LTE: Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding (3GPP TS 36.212 version 10.0.0 Release 10) (2008)

  20. G. Masera, G. Piccinini, M.R. Roch, M. Zamboni, VLSI architectures for turbo codes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7, 369–379 (1999)

    Article  Google Scholar 

  21. G. Masera, M. Mazza, G. Piccinini, F. Viglione, M. Zamboni, Architectural strategies for low-power VLSI turbo decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 279–285 (2002)

    Article  Google Scholar 

  22. H. Michel, A. Worm, N. Wehn, Influence of quantization on the bit-error performance of turbo-decoders. Proc. IEEE Veh. Technol. Conf. 1, 581–585 (2000)

    Google Scholar 

  23. X. Ma, A. Kavcic, Path partitions and forward-only trellis algorithms. IEEE Trans. Inf. Theory 49, 38–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Martina, G. Masera, State metric compression techniques for turbo decoder architectures. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1119–1128 (2011)

    Article  MathSciNet  Google Scholar 

  25. J.G. Proakis, Digital Communications, Reading, 2nd edn. (McGraw-Hill, New York, 1989)

    Google Scholar 

  26. C.E. Shannon, A mathematical theory of communication: part-I. Bell Syst. Tech. J. 21, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  27. C.E. Shannon, A mathematical theory of communication: part-II. Bell Syst. Tech. J. 21, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Studer, C. Benkeser, S. Belfanti, Q. Huang, Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE J. Solid State Circuits 46, 8–17 (2011)

    Article  Google Scholar 

  29. Y. Sun, J.R. Cavallaro, efficient hardware implementation of a highly-parallel 3gpp lte/lte-advance turbo decoder. Integr. VLSI J. 44, 305–315 (2011)

    Article  Google Scholar 

  30. Y. Sun, Y. Zhu, M. Goel, J.R. Cavallaro, Configurable and scalable high throughput turbo decoder architecture for multiple 4G wireless standards, in International Conference on Applied-Specific System, Architecture and Processors, pp. 209–214 (2008)

  31. R. Shrestha, R.P. Paily, High-throughput turbo decoder with parallel architecture for LTE wireless communication standards. IEEE Trans. Circuits Syst. I Regul. Pap. 61, 2699–2710 (2014)

    Article  Google Scholar 

  32. S. Talakoub, L. Sabeti, B. Shahrrava, M. Ahmadi, An improved Max-Log-MAP algorithm for turbo decoding and turbo equalization. IEEE Trans. Instrum. Meas. 56, 1058–1063 (2007)

    Article  Google Scholar 

  33. T.-H. Tsai, C.-H. Lin, A new memory-reduced architecture design for Log-MAP algorithm in turbo decoding, in IEEE 6th CAS Symposium on Emerging Technologies: Mobile and Wireless Communications, vol 2, pp. 607–610 (2004)

  34. T-H. Tsai, C-H. Lin, A.-Y. Wu, A memory-reduced Log-MAP kernel for turbo decoder, in IEEE International Symposium on Circuits and Systems (ISCAS), vol 2, pp. 1032–1035 (2005)

  35. F. Vasefi, Z. Abid, Low power n-bit adder and multiplier using lowest-number-or-transistor 1-bit adders, in Canadian Conference on Electrical and Computer Engineering, pp. 1731–1734 (2005)

  36. C.-C. Wong, H.-C. Chang, High-efficiency processing schedule for parallel turbo decoders using QPP interleaver. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1412–1420 (2011)

    Article  MathSciNet  Google Scholar 

  37. C.-C. Wong, H.-C. Chang, Reconfigurable turbo decoder with parallel architecture for 3GPP LTE system. IEEE Trans. Circuits Syst. II Exp. Briefs 57, 566–570 (2010)

    Article  Google Scholar 

  38. C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang, C.-Y. Lee, Turbo decoder using contention-free interleaver and parallel architecture. IEEE J. Solid State Circuits 45, 422–432 (2010)

    Article  Google Scholar 

  39. J.P. Woodard, L. Hanzo, Comparative study of turbo decoding techniques: an overview. IEEE Trans. Veh. Technol. 49, 2208–2233 (2000)

    Article  Google Scholar 

  40. N.H.E. Weste, D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Reading (Pearson-Addison Wesley, MA, 2005)

    Google Scholar 

  41. Y. Wu, B.D. Woerner, T.K. Blankenship, Data width requirements in SISO decoding with modulo normalization. IEEE Trans. Commun. 49, 1861–1868 (2001)

    Article  MATH  Google Scholar 

  42. Z. Wang, Z. Chi, K.K. Parhi, Area-efficient high-speed decoding scheme for turbo decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 902–912 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Shrestha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, R., Paily, R. Memory-Reduced Maximum A Posteriori Probability Decoding for High-Throughput Parallel Turbo Decoders. Circuits Syst Signal Process 35, 2832–2854 (2016). https://doi.org/10.1007/s00034-015-0168-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0168-4

Keywords

Navigation