Skip to main content
Log in

Biorthogonal Multiwavelets with Sampling Property and Application in Image Compression

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper discusses biorthogonal multiwavelets with sampling property. In such systems, vector-valued refinable functions act as the sinc function in the Shannon sampling theorem, and their corresponding matrix-valued masks possess a special structure. In particular, for the multiplicity \(r=2\), a biorthogonal multifilter bank can be reduced to two scalar-valued filters. Moreover, if the vector-valued scaling functions are interpolating, three different concepts: balancing order, approximation order and analysis-ready order, will be shown to be equivalent. Based on this result, we introduce the transferring armlet order for constructing biorthogonal balanced multiwavelets with sampling property. Also, some balanced biorthogonal multiwavelets will be obtained. Finally, application of biorthogonal interpolating multiwavelets in image compression is discussed. Experiments show that for the same length, the biorthogonal multifilter bank is superior to the orthogonal case. Moreover, certain biorthogonal interpolating multiwavelets are also better than the classical Daubechies wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Aldroubi, M. Unser, Families of wavelet transforms in connection with Shannon’s sampling theory and the Gabor transform, in Wavelets: A Tutorial in Theory and Applications, ed. by C.K. Chui (Academic, New York, 1992), pp. 509–528

    Chapter  Google Scholar 

  2. A. Aldroubi, M. Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory. Numer. Funct. Anal. Optim. 15(1–2), 1–21 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Bray, K. McCormick, R.O. Wells, X. Zhou, Wavelet variations on the Shannon sampling theorem. Curr. Mod. Biol. 34(1–3), 249–257 (1995)

    Google Scholar 

  4. C.K. Chui, J. Lian, A study of orthonormal multiwavelets. J. Appl. Numer. Math. 20(3), 273–298 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  6. J. Geronimo, D. Hardin, P. Massoputs, Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. T.N.T. Goodman, C.A. Micchelli, Orthonormal Cardinal Functions, in Wavelets: Theory, Algorithms, and Applications (Academic, San Diego, CA, 1994)

    Google Scholar 

  8. Q.T. Jiang, On the design of multifilter banks and orthonormal multiwavelet bases. IEEE Trans. Signal Process. 46(12), 3292–3303 (1998)

    Article  Google Scholar 

  9. Q.T. Jiang, Parametrization of M-channel orthogonal multifilter banks. Adv. Comput. Math. 12(2–3), 189–211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Q.T. Jiang, Orthogonal and biorthogonal square-root(3)-refinement wavelets for hexagonal data processing. IEEE Trans. Signal Process. 57(11), 4313–14304 (2009)

    Google Scholar 

  11. Q.T. Jiang, Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing. Adv. Comput. Math. 34(2), 127–165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Lebrun, M. vetterli, Balanced multiwavelets, IEEE international conference on acoustics, speech and signal processing, vol. 3 (1997), pp. 2473–2476

  13. J. Lebrun, M. Vetterli, High-order balanced multiwavelets: theory, factorization and design. IEEE Trans. Signal Process. 49(9), 1918–1930 (2001)

    Article  MathSciNet  Google Scholar 

  14. J.-A. Lian, C.K. Chui, Analysis-ready multiwavelets (armlets) for processing scalar-valued signals. IEEE Signal Process. Lett. 11(2), 205–208 (2004)

    Article  Google Scholar 

  15. B.B. Li, L.Z. Peng, Parametrization for balanced multifilter banks. Int. J. Wavelets Multiresolut. Inf. Process. 6(4), 617–629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. B.B. Li, L.Z. Peng, Balanced multiwavelets with interpolatory property. IEEE Trans. Image Process. 20(5), 1450–1457 (2011)

    Article  MathSciNet  Google Scholar 

  17. B.B. Li, L.Z. Peng, Balanced multifilter banks for multiple description coding. IEEE Trans. Image Process. 20(3), 866–872 (2011)

    Article  MathSciNet  Google Scholar 

  18. B.B. Li, L.Z. Peng, Balanced interpolatory multiwavelets with multiplicity \(r\). Int. J. Wavelets Multiresolut. Inf. Process. 10(4), 1250039 (2012)

    Article  MathSciNet  Google Scholar 

  19. L. Liu, H. Zhang, Application on Image fusion based on balanced multi-wavelet, 2010 International Symposium on Intelligence Information Processing and Trusted Computing, 512–515 (2010)

  20. W. Liu, Z. Ma, X. Tan, Multiple-description video coding based on balanced multiwavelet image transformation. Internet Imaging VI SPIE 5670, 280–291 (2005)

    Article  Google Scholar 

  21. Walid A. Mahmoud, Majed E. Alneby, Wael H. Zayer, 2D-multiwavelet transform 2D-two activation function wavelet network based face recognition. J. Appl. Sci. Res. 6(8), 1019–1028 (2010)

    Google Scholar 

  22. M.B. Martin, A.E. Bell, New image compression techniques using multiwavelets and multiwavelet packets. IEEE Trans. Image Process. 10(4), 500–510 (2001)

    Article  MATH  Google Scholar 

  23. G. Plonka, V. Strela, Construction of multiscaling function’s with approximation and symmetry. SIAM J. Math. Anal. 29(2), 481–510 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Saito, G. Beylkin, Multiresolution representations using the autocorrelation functions of compactly supported wavelets IEEE trans. Signal Process. 41(12), 3584–3590 (1993)

    MATH  Google Scholar 

  25. I.W. Selesnick, Interpolating multiwavelet bases and the sampling theorem. IEEE Trans. Signal Process. 47(6), 1615–1621 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Shen, H.H. Tan, J.Y. Tham, Symmetric–antisymmetric orthonormal multiwavelets and related scalar wavelets. Appl. Comput. Harmon. Anal. 8(3), 258–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Shen, H.H. Tan, On a family of orthonormal scalar wavelets and related balanced multiwavelets. IEEE Trans. Signal Process. 49(7), 1447–1453 (2001)

    Article  MathSciNet  Google Scholar 

  28. G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge, Wellesley, 1996)

    MATH  Google Scholar 

  29. V. Strela, P. Heller, G. Strang, P. Topiwala, C. Heil, The application of multiwavelet filter banks to image processing. IEEE Trans. Image Process. 8(4), 548–563 (1999)

    Article  Google Scholar 

  30. P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs (Prentice Hall, NJ, 1993)

    Google Scholar 

  31. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. C. Weidmann, J. Lebrun, M. Vetterli, Significance tree image coding using balanced multiwavelets. Proc. ICIP, Chicago, IL, Oct. 1, 97–101 (1998)

  33. X.-G. Xia, B.W. Suter, Vector-valued wavelets and vector filter banks. IEEE Trans. Signal Process. 44(3), 508–518 (1996)

    Article  Google Scholar 

  34. X.-G. Xia, Z. Zhang, On sampling theorem, wavelets, and wavelet transforms. IEEE Trans. Signal Process. 41(12), 2535–3524 (1993)

    Google Scholar 

  35. J.-K. Zhang, T.N. Davidson, Z.-Q. Luo, K.M. Wong, Design of interpolating biorthogonal multiwavelet systems with compact support. Appl Comput Harmon Anal 11(3), 420–438 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. D.-X. Zhou, Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans. Signal Process. 50(3), 520–527 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank anonymous reviewers and the editor-in-chief, Prof. M.N.S.Swamy, for their valuable suggestions and comments for improving the presentation of this paper. This work was supported in part by NSFC under Grant No. 11301504 and in part by the President Fund of University of Chinese Academy of Sciences under Grant No. Y25101HY00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baobin Li.

Appendices

Appendix 1: Proofs of Theorems

1.1 Proof of Theorem 1

Proof

First, for biorthogonal multifilter banks, perfect reconstruction conditions (1)–(4) are equal to \(A\cdot B^{*}=-C\cdot B^{*}=-A\cdot D^{*}=C\cdot D^{*}=2I_2.\) The equation \(A\cdot B^{*}=2I_2\) can be written as

$$\begin{aligned} \begin{array}{ll} a(z)a_1(z^{-1})+a(-z)a_1(-z^{-1})=2,\quad a(z)b_1(z^{-1})+a(-z)b_1(-z^{-1})=0,\\ b(z)a_1(z^{-1})+b(-z)a_1(-z^{-1})=0,\quad b(z)b_1(z^{-1})+b(-z)b_1(-z^{-1})=2,\\ \end{array} \end{aligned}$$

which tells us that \(b_1(z)=sz^{2m+1}a(-z^{-1}),\ a_1(z)=-sz^{2m+1}b(-z^{-1})\) and \(b(z)a(-z)-b(-z)a(z)=2z^{2m+1}s^{-1}\).

By \(A\cdot B^{*}=-C\cdot B^{*}=-A\cdot D^{*}=C\cdot D^{*}\), and above equations, it is easy to get \(c(z)=-a(z),\ d(z)=-b(z),\ c_1(z)=-a_1(z),\ d_1(z)=-b_1(z)\). Thus, the proof of Theorem 1 is completed. \(\square \)

1.2 Proof of Theorem 3

Proof

We only need to prove the sufficiency because if one multiwavelet is balanced of order n, it must be an armlet of the same order. So, in the following, we suppose \(\varPsi \) and \(\widetilde{\varPsi }\) to be armlets of order n.

Let \(\{V_{j}\}_{j\in \mathbb {Z}}\) and \(\{\widetilde{V}_{j}\}_{j\in \mathbb {Z}}\) be the corresponding MRAs. If \(\varPhi \) is interpolating, for any signal f(x) in \(V_{N}\), it has the decomposition \(f(x)=\sum _{n}c^{T}_{N,n}\varPhi (2^{N}x-n),\) where \(c_{N,n}=\left[ c^{1}_{N,n}=f(\frac{n}{2^N}),c^{2}_{N,n}=f(\frac{n}{2^{N}}+\frac{1}{2^{N+1}})\right] ^T\). Proceed to the decomposition:

$$\begin{aligned} c_{N-1,n}=\sum _{k\in \mathbb {Z}}h_{k-2n}c_{N,k},\quad \mathrm{{and}} \quad d_{N-1,n}=\sum _{k\in \mathbb {Z}}g_{k-2n}c_{N,k}. \end{aligned}$$

For the synthesis, we have \( c_{N,n}=\sum _{k\in \mathbb {Z}}\left\{ \widetilde{h}^{T}_{n-2k}c_{N-1,k}+\widetilde{g}^{T}_{n-2k}d_{N-1,k}\right\} . \) Then, if we take f(x) as a polynomial of order less than n, by the definition of an armlet, it is easy to obtain that \(d_{N-1,k}=0\) in the above equation. And we have

$$\begin{aligned} c_{N,n}=\sum _{k\in \mathbb {Z}}\widetilde{h}^{T}_{n-2k}c_{N-1,k}, \end{aligned}$$

where \(c_{N,n}\) and \(c_{N-1,k}\) are sampling values of the polynomial f at the level N and \(N-1\), respectively. Thus, by the definition of balanced multiwavelets, \(\widetilde{\varPsi }\) is a balanced multiwavelet of order n.

By a similar discussion of \(\varPsi \), we can show that \(\varPsi \) is also a balanced multiwavelet of order n. Hence, the proof of this theorem is completed. \(\square \)

Appendix 2: The Orthogonal Multifilter Bank \(\{H,G\}\) in [10]

$$\begin{aligned} \begin{array}{llll} H=[h_{-3}, h_{-2}, h_{-1}, h_0, h_1, h_2, h_3, h_4]= &{} G=[g_{-3}, g_{-2}, g_{-1}, g_0, g_1, g_2, g_3, g_4]=\\ \begin{array}{lll} h_{-3}\!=\!\left( \begin{array}{ll} 0 &{} 0.0022908\\ 0 &{} 0.0001688 \end{array}\right) &{} h_{-2}\!=\!\left( \begin{array}{ll} 0 &{} 0.0310811\\ 0 &{} 0.0022908 \end{array}\right) \\ h_{-1}\!=\!\left( \begin{array}{ll} 0 &{} 0.2431275\\ 0 &{} 0.0307434 \end{array}\right) &{} h_{0}\ \ \!=\!\left( \begin{array}{ll} 1 &{} 0.9380065\\ 0 &{} 0.2431275 \end{array}\right) \\ h_{1}\ \ \!=\!\left( \begin{array}{ll} 0 &{} -0.243127\\ 1 &{} 0.9380065 \end{array}\right) &{} h_{2}\ \ \!=\!\left( \begin{array}{ll} 0 &{} 0.0307434\\ 0 &{} -0.243127 \end{array}\right) \\ h_{3}\ \ \!=\!\left( \begin{array}{ll} 0 &{} -0.002290\\ 0 &{} 0.0310811 \end{array}\right) &{} h_{4}\ \ \!=\!\left( \begin{array}{ll} 0 &{} 0.0001688\\ 0 &{} -0.002290 \end{array}\right) \\ \end{array} &{} \begin{array}{lll} g_{-3}\!=\!\left( \begin{array}{ll} 0 &{} -0.002290\\ 0 &{} -0.000168 \end{array}\right) &{} g_{-2}\!=\!\left( \begin{array}{ll} 0 &{} -0.031081\\ 0 &{} -0.002290 \end{array}\right) \\ g_{-1}\!=\!\left( \begin{array}{ll} 0 &{} -0.243127\\ 0 &{} -0.030743 \end{array}\right) &{} g_{0}\ \ \!=\!\left( \begin{array}{ll} 1 &{} -0.938006\\ 0 &{} -0.243127 \end{array}\right) \\ g_{1}\ \ \!=\!\left( \begin{array}{ll} 0 &{} 0.2431275\\ 1 &{} -0.938006 \end{array}\right) &{} g_{2}\ \ \!=\!\left( \begin{array}{ll} 0 &{} -0.030743\\ 0 &{} 0.2431275 \end{array}\right) \\ g_{3}\ \ \!=\!\left( \begin{array}{ll} 0 &{} 0.0022908\\ 0 &{} -0.031081 \end{array}\right) &{} g_{4}\ \ \!=\!\left( \begin{array}{ll} 0 &{} -0.000168\\ 0 &{} 0.0022908 \end{array}\right) \\ \end{array} \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Peng, L. Biorthogonal Multiwavelets with Sampling Property and Application in Image Compression. Circuits Syst Signal Process 35, 933–951 (2016). https://doi.org/10.1007/s00034-015-0095-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0095-4

Keywords

Mathematics Subject Classification

Navigation