Skip to main content
Log in

0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new solution for an ultra-low-voltage, low-power, bulk-driven operational amplifier is presented in the paper. The amplifier is based on a new input stage, exploiting the concept of partial positive feedback. As compared with prior work, the proposed input stage offers improvement of all basic performance metrics, including such important parameters as input-referred noise and offset voltage. In order to improve the DC voltage gain of the overall op-amp, a novel solution for an ultra-low-voltage, high-input-resistance common-mode amplifier has also been proposed. Simulated performance of the overall operational amplifier for a 50 nm CMOS process and supply voltage of 0.4 V shows power dissipation of 24 \(\upmu \)W, the open-loop voltage gain of 60dB, and the gain-bandwidth product of 2.18 MHz for 20 pF load capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.J. Baker, CMOS Circuit Design, Layout and Simulation (Wiley, Hoboken, 2008)

    Google Scholar 

  2. B.J. Blalock, P.E. Allen, G.A. Rincon-Mora, Designing 1-V op amps using standard digital CMOS technology. IEEE Trans. Circuits Syst. II 45, 769–780 (1998)

    Article  Google Scholar 

  3. J.M. Carrillo, G. Torelli, R. Perez-Aloe, J.F. Duque-Carrillo, 1-V rail-to-rail CMOS op-amp with improved bulk-driven input stage. IEEE J. Solid State Circuits 42, 508–517 (2007)

    Article  Google Scholar 

  4. J.M. Carrillo, G. Torelli, M.A. Dominguez, R. Perez-Aloe, J.M. Velverde, J.F. Duque-Carrillo, A family of low-voltage bulk-driven CMOS continuous-time CMFB circuits. IEEE Trans. Circuits Syst. II 57, 863–867 (2010)

    Article  Google Scholar 

  5. J.M. Carrillo, G. Torelli, J.F. Duque-Carrillo, Transconductance enhancement in bulk-driven input stages and its applications. Analog Integr. Circuits Signal Process. 68, 207–217 (2011)

    Article  Google Scholar 

  6. J.M. Carrillo, G. Torelli, M.A. Dominguez, J.F. Duque-Carrillo, On the input common-mode voltage range of CMOS bulk-driven input stages. Int. J. Circuit Theory Appl. 39, 649–664 (2011)

    Article  Google Scholar 

  7. R.G. Carvajal, J. Ramirez-Angulo, A.J. Lopez\_Martin, A. Torralba, J.A.G. Galan, A. Carlosena, F.N. Chavero, The flipped voltage follower: a useful cell for low-voltage low-power circuit design. IEEE Trans. Circuit Syst. I(52), 1276–1291 (2005)

    Article  Google Scholar 

  8. S. Chatterjee, Y. Tsividis, P. Kinget, 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid State Circuits 40, 2373–2387 (2005)

    Article  Google Scholar 

  9. I. Grech, J. Micallef, G. Azzopardi, C.J. Debono, A low voltage wide-input-range bulk-input CMOS OTA. Analog Integr. Circuits Signal Process. 43, 127–136 (2005)

    Article  Google Scholar 

  10. A. Guziński, M. Białko, J.C. Matheau, Body-driven differential amplifier for applications in continuous-time active-C filter. in Proc. ECCTD (1987), pp. 315–320.

  11. Y. Haga, I. Kale, CMOS buffer using complementary pair of bulk-driven super source followers. IET Electron. Lett. 45, 917–918 (2009)

    Article  Google Scholar 

  12. Y. Haga, I. Kale, Bulk-driven dc level shifter. in Proc. ISCAS (2011), pp. 2039–2042

  13. International Roadmap for Semiconductors, 2012 [Online]. Available: http://public.itrs.net

  14. F. Khateb, S. Bay Abo Dabbous, S. Vlassis, A survey of non-conventional techniques for low-voltage, low-power analog circuits design. Radioengineering 22, 415–427 (2013)

    Google Scholar 

  15. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 30, 1071–1089 (2011)

    Article  Google Scholar 

  16. F. Khateb, N. Khatib, D. Kubánek, Novel low-voltage low-power high-precision CCII\(\pm \) based on bulk-driven folded cascode OTA. Microelectron. J. 42, 622–631 (2011)

    Article  Google Scholar 

  17. F. Khateb, S. Vlassis, Low-voltage bulk-driven rectifier for biomedical applications. Microelectron. J. 44, 642–648 (2013)

    Article  Google Scholar 

  18. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, Differential-difference current conveyor using bulk-driven technique for ultra-low-voltage applications. Circuits Syst. Signal Process. 33, 159–176 (2014)

    Article  Google Scholar 

  19. T. Kulej, Low-Voltage CMOS transconductance amplifier controlled from body terminals. Bull. Pol. Acad. Sci. Tech. Sci. 47, 255–261 (1999)

    Google Scholar 

  20. T. Kulej, Low-voltage bulk-driven transconductance amplifier in CMOS technology. Prz. Elektrotech. 87, 267–270 (2011)

    Google Scholar 

  21. T. Kulej, 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 7, 352–360 (2013)

    Article  Google Scholar 

  22. T. Kulej, 0.5-V bulk-driven OTA and its applications. Int. J. Circuit Theory Appl. (2013). DOI: 10.1002/cta.1932

  23. P. Monsurro, S. Pennisi, G. Scotti, A. Trifiletti, 0.9-V CMOS cascode amplifier with body-driven gain boosting. Int. J. Circuit Theory Appl. 37, 193–202 (2009)

    Article  Google Scholar 

  24. P. Monsurro, S. Pennisi, G. Scotti, A. Trifiletti, Exploiting the body of MOS devices for high performance analog design. IEEE Circuits Systems Mag. 11, 8–23 (2011)

    Article  Google Scholar 

  25. G. Raikos, S. Vlassis, 0.8V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 63, 425–432 (2010)

    Article  Google Scholar 

  26. G. Raikos, S. Vlassis, Low-voltage bulk-driven input stage with improved transconductance. Int. J. Circuit Theory Appl. 39, 327–339 (2011)

    Article  Google Scholar 

  27. G. Raikos, S. Vlassis, 0.5-V bulk-driven differential amplifier. Int. J. Circuit Theory Appl. 41, 1213–1225 (2013)

    Article  Google Scholar 

  28. M. Trakimas, S. Sonkusale, A 0.5V bulk-input OTA with improved common-mode feedback for low frequency filtering applications. Analog Integr. Circuits and Signal Process. 59, 83–89 (2009)

    Article  Google Scholar 

  29. S. Yan, E. Sánchez-Sinencio, Low-voltage analog circuit design techniques: a tutorial. IEICE Trans. Analog Integr. Circuits Syst. E 00–A, 1–17 (2000)

    Google Scholar 

  30. X. Zhang, E. El-Masry, A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Trans. Circuit Syst I 54, 1204–1212 (2007)

    Article  Google Scholar 

  31. L. Zuo, S.K. Islam, Low-voltage bulk-driven operational amplifier with improved transconductance. IEEE Trans. Circuit Syst. I 60, 2084–2091 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kulej.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulej, T. 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits Syst Signal Process 34, 1167–1185 (2015). https://doi.org/10.1007/s00034-014-9906-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9906-2

Keywords

Navigation