Skip to main content
Log in

Observer Based Finite-Time Stabilization for Discrete-Time Markov Jump Systems with Gaussian Transition Probabilities

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper solves the observer-based finite-time stabilization problem for discrete-time non-homogeneous jump linear systems with time-delays and norm-bounded exogenous disturbance. The exact value of transition probabilities (TPs) is not available, and the known information is the measured Gaussian probability density function of TPs. For the case that the states are not measurable, an observer-based control scheme is adopted to guarantee the stochastic finite-time boundedness and stochastic finite-time stabilization of the resulting closed-loop systems. Numerical examples are given to verify the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001)

    Article  MATH  Google Scholar 

  2. F. Amato, M. Ariola, Finite-time control of discrete-time linear systems. IEEE Trans. Autom. Control 50(5), 724–729 (2005)

    Article  MathSciNet  Google Scholar 

  3. F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, Finite-time stability of linear time-varying systems with jumps. Automatica 45(5), 1354–1358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.P. Blair, D.D. Sworder, Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria. Int. J. Control 21(5), 833–844 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. E.K. Boukas, Stochastic Switching Systems: Analysis and Design (Boston, Basel, 2005)

    Google Scholar 

  6. A. Castro, B. Rubens, T. Moeller, H. Wabnitz, T. Laarmann, Dependence of transition probabilities for non-linear photo-ionization of He atoms on the structure of the exciting radiation pulses. Braz. J. Phys. 35(3a), 632–635 (2005)

    Article  Google Scholar 

  7. O.L.V. Costa, M.D. Fragoso, R.P. Marques, Discrete Time Markovian Jump Linear Systems (Springer, London, 2005)

    Book  Google Scholar 

  8. P. Dorato, Short time stability in linear time-varying systems, in Proceedings of the IRE International Convention Record, Part 4 (New York, 1961), pp. 83–87

  9. L.E. El Ghaoui, F. Oustery, M. Aitrami, A cone complementarity linearization algorithm for static output feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997)

    Article  MATH  Google Scholar 

  10. Y. He, M. Wu, G.P. Liu, J.H. She, Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans. Autom. Control 53(10), 2372–2377 (2008)

    Article  MathSciNet  Google Scholar 

  11. S.P. He, F. Liu, Stochastic finite-time stabilization for uncertain jump systems via state feedback. J. Dyn. Syst. Meas. Control 132(3), 0345041–0345044 (2010)

    Article  Google Scholar 

  12. S.P. He, F. Liu, Stochastic finite-time boundedness of Markovian jumping neural network with uncertain transition probabilities. Appl. Math. Model. 35(6), 2631–2638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.P. He, F. Liu, Finite-time fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback. IEEE Trans. Fuzzy Syst. 20(4), 605–614 (2012)

    Article  Google Scholar 

  14. L. Hou, G. Zong, Y. Wu, Finite-time control for switched delay systems via dynamic output feedback. Int. J. Innov. Comput. Inf. Control 8(7A), 4901–4913 (2012)

    Google Scholar 

  15. Y. Ji, H.J. Chizeck, Controllability, stability and continuous-time Markovian jump linear quadratic control. IEEE Trans. Autom. Control 35, 777–788 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. U.U. Kocer, Forecasting intermittent demand by Markov chain model. Int. J. Innov. Comput. Inf. Control 9(8), 3307–3318 (2013)

    Google Scholar 

  17. F. Li, X. Wang, P. Shi, Robust quantized \(H_{\infty }\) control for network control systems with Markovian jumps and time delays. Int. J. Innov. Comput. Inf. Control 9(12), 4889–4902 (2013)

    MathSciNet  Google Scholar 

  18. J. Liu, Z. Gu, S. Hu, \(H_{\infty }\) filtering for Markovian jump systems with time-varying delays. Int. J. Innov. Comput. Inf. Control 7(3), 1299–1310 (2011)

    MathSciNet  Google Scholar 

  19. X.L. Luan, F. Liu, P. Shi, Neural-network-based finite-time \(H_{\infty }\) control for extended Markov jump nonlinear systems. Int. J. Adapt. Control Signal Process. 24(7), 554–567 (2010)

    MathSciNet  MATH  Google Scholar 

  20. X.L. Luan, F. Liu, P. Shi, Finite-time filtering for nonlinear stochastic systems with partially known transition jump rates. IET Control Theory Appl. 4(5), 735–745 (2010)

    Article  MathSciNet  Google Scholar 

  21. X.L. Luan, F. Liu, P. Shi, Neural network based stochastic optimal control for nonlinear Markov jump systems. Int. J. Innov. Comput. Inf. Control 6(8), 3715–3723 (2010)

    Google Scholar 

  22. X.L. Luan, F. Liu, P. Shi, Robust finite-time \(H_{\infty }\) control for nonlinear jump systems via neural networks. Circuits Syst. Signal Process. 29(3), 481–498 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. X.L. Luan, F. Liu, P. Shi, Finite-time stabilization of stochastic systems with partially known transition probabilities. J. Dynamic Syst. Meas. Control 133(1), 014504–014510 (2011)

    Article  Google Scholar 

  24. X.L. Luan, F. Liu, P. Shi, Robust finite-time control for a class of extended stochastic switching systems. Int. J. Syst. Sci. 42(7), 1197–1205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. X.L. Luan, P. Shi, F. Liu, Finite-time stabilization for Markov jump systems with Gaussian transition probabilities. IET Control Theory Appl. 7(2), 298–304 (2013)

    Article  MathSciNet  Google Scholar 

  26. Y.S. Moon, P. Park, W.H. Kwon, Y.S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control 74, 1447–1455 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  28. P. Shi, E.K. Boukas, R. Agarwal, Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay. IEEE Trans. Autom. Control 44(11), 2139–2144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Shi, E.K. Boukas, R. Agarwal, Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters. IEEE Trans. Autom. Control 44, 1592–1597 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Shi, Y. Xia, G. Liu, D. Rees, On designing of sliding mode control for stochastic jump systems. IEEE Trans. Autom. Control 51(1), 97–103 (2006)

    Article  MathSciNet  Google Scholar 

  31. L.G. Wu, X.J. Su, P. Shi, Sliding mode control with bounded \(L_{2}\) gain performance of Markovian jump singular time-delay systems. Automatica 48(8), 1929–1933 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. L.G. Wu, X.J. Su, P. Shi, Output feedback control of Markovian jump repeated scalar nonlinear systems, IEEE Trans. Autom. Control (2014). doi:10.1109/TAC.2013.2267353

  33. J.L. Xiong, J. Lam, H.J. Gao, D.W.C. Ho, On robust stabilization of Markovian jump systems with uncertain switching probabilities. Automatica 41(5), 897–903 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. J.L. Xiong, J. Lam, Fixed-order robust H-infinity filter design for Markovian jump systems with uncertain switching probabilities. IEEE Trans. Signal Process. 54(4), 1421–1430 (2006)

    Article  Google Scholar 

  35. R. Yang, P. Shi, G. Liu, H. Gao, Network-based feedback control for systems with mixed delays based on quantization and dropout compensation. Automatica 47(12), 2805–2809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.S. Yu. Numerical path integration of stochastic systems. Ph.D. Dissertation, Florida Atlantic University, Florida, United States, 1997

  37. L.X. Zhang, \(H_{\infty }\) estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica 45(11), 2570–2576 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. L.X. Zhang, E.K. Boukas, Mode-dependent \(H_{\infty }\) filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(6), 1462–1467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. L.X. Zhang, E.K. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(2), 463–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Zhang, Y. He, M. Wu, J. Zhang, Mode-dependent \(H_{\infty }\) filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Automatica 47(1), 79–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. X.F. Zhang, G. Feng, Y.H. Sun, Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica 48(3), 499–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61104121) and the Program for Excellent Innovative Team of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Luan, X. & Liu, F. Observer Based Finite-Time Stabilization for Discrete-Time Markov Jump Systems with Gaussian Transition Probabilities. Circuits Syst Signal Process 33, 3019–3035 (2014). https://doi.org/10.1007/s00034-014-9787-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9787-4

Keywords

Navigation