Skip to main content
Log in

Effect of Time Lag in Response to Switching Signal in Interrupted Electric Circuit

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, we analyze the characteristics of an interrupted electric circuit. In particular, we focus on a special situation where the switching action of the circuit is delayed because of a time lag in the response to the switching signal. This situation is observed in switching circuits driven by a high-frequency switching signal. However, the fundamental characteristics of this type of circuit have not yet been clarified. To address this shortfall, we assume that a time lag of the response to the switching signal occurs in simple interrupted electric circuits, and investigate how this time lag affects circuit characteristics. First, we show the model of a circuit whose switching action is the same as that of a current-mode-controlled dc/dc converter. Here by using logic circuits, we impose an artificial time lag on the response to the switching signal. Next, we define a sampled data model (i.e., a return map) that we analyze in detail. Based on the return map, we derive one- and two-parameter bifurcation diagrams. Finally, we compare the bifurcation diagrams constructed with time lag to those constructed without time lag. The results clearly show that time lag is responsible for a new structure in the return map that does not occur in circuits with ideal switching. This new return map structure is a key to understanding the essential characteristics of circuits with time lag. Furthermore, the mathematical results are verified experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Asahara, T. Suzui, T. Kousaka, Dynamical effect of the spike noise in a system interrupted by own state and a periodic interval. IEICE Trans. Fund. J92–A(9), 596–603 (2009). (In Japanese)

    Google Scholar 

  2. H. Asahara, T. Kousaka, Qualitative analysis of an interrupted electric circuit with spike noise. Int. J. Circ. Theor. Appl. 39(11), 1177–1187 (2011)

    Article  Google Scholar 

  3. H. Asahara, T. Kousaka, Experimental validation of a hybrid dynamical system with switching delay. J. Signal Process. 13(4), 307–310 (2009)

    Google Scholar 

  4. H. Asahara, T. Kousaka, Effect of switching delay in an interrupted electric circuit Proc. of 17th International Workshop on Nonlinear Dynamics of Electronic Systems, 146–149 (2009).

  5. S. Banerjee, Coexisting attractors, chaotic saddles, and fractal basins in a power electronic circuit. IEEE Trans. Circ. Syst. I 44(9), 847–849 (1997)

    Article  Google Scholar 

  6. S. Banerjee, M.S. Karthik, Y. Guohui, J.A. Yorke, Bifurcations in one-dimensional piecewise smooth maps—theory and applications in switching circuits. IEEE Trans. Circ. Syst. I 47(3), 389–394 (2000)

    Article  MATH  Google Scholar 

  7. S. Banerjee, P. Ranjan, C. Grebogi, Bifurcations in two-dimensional piecewise smooth maps—Theory and applications in switching circuits. IEEE Trans. Circ. Syst. I 47(5), 633–643 (2000)

    Article  MATH  Google Scholar 

  8. S. Banerjee, G.C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control (Wiley, New York, 2001)

    Book  Google Scholar 

  9. S. Banerjee, S. Parui, A. Cupta, Dynamical effects of missed switching in current-model controlled dc-dc converters. IEEE Trans. Circ. Syst. II 51(12), 649–654 (2004)

    Google Scholar 

  10. J.H.B. Deane, D.C. Hamill, Instability, subharmonics and chaos in power electronics systems. IEEE Trans. Power Electron. 5(3), 260–268 (1990)

    Article  Google Scholar 

  11. D. Fournier-Prunaret, P. Chargé, L. Gardini, Border collision bifurcations and chaotic sets in a two-dimensional piecewise linear map. Commun. Nonlinear Sci. Numer. Simulat. 16(2), 916–927 (2011)

    Article  MATH  Google Scholar 

  12. D.C. Hamill, D.J. Jefferies, Subharmonics and chaos in a controlled switched-mode power converter. IEEE Trans. Circ. Syst. I 35(8), 1059–1061 (1988)

    Article  Google Scholar 

  13. N. Inaba, Y. Nishio, T. Endo, Chaos via torus breakdown from a four-dimensional autonomous oscillator with two diodes. Physica D 240(11), 903–912 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Ito, H. Nakada, S. Tanaka, On unimodal linear transformations and chaos ii. Tokyo J. Math. 2(2), 241–259 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. H.H.C. Iu, C.K. Tse, O. Dranga, Comparative study of bifurcation in single and parallel-connected buck converters under current-mode control: disappearance of period-doubling. Circ. Syst. Signal Process. 24(2), 201–219 (2005)

    Article  MATH  Google Scholar 

  16. T. Kousaka, T. Ueta, H. Kawakami, Bifurcation of switched nonlinear dynamical systems. IEEE Trans. Circ. Syst. I 46(7), 878–885 (1999)

    MATH  Google Scholar 

  17. T. Kousaka, T. Ueta, S. Tahara, H. Kawakami, M. Abe, Implementation and analysis of a simple circuit causing border-collision bifurcation. J. IEE Japan 122–C(11), 1908–1916 (2002). (In Japanese)

    Google Scholar 

  18. T. Kousaka, H. Asahara, Dynamical mechanism for interrupted circuit with switching delay. IEICE Electron. Express 6(12), 806–810 (2009)

    Article  Google Scholar 

  19. P.T. Krein, Elements of Power Electronics. Oxford university (1998).

  20. M. Kuboshima, T. Saito, Bifurcation from a chaos generator including switched inductor with time delay. IEICE Trans. Fund. Electron. E80–A(9), 1567–1571 (1997)

    Google Scholar 

  21. L. Ming, D. Dong, M. Xikui, Slow-scale and fast-scale instabilities in voltage-mode controlled full-bridge inverter. Circ. Syst. Signal Process. 27(6), 811–831 (2008)

    Article  MATH  Google Scholar 

  22. T. Maruyama, N. Inaba, Y. Nishio, S. Mori, Chaos in an auto gain controlled oscillator containing time delay. IEICE Trans. Electron. Inform. Comm. Eng. J72–A(11), 1814–1820 (1989). (In Japanese)

    Google Scholar 

  23. H.E. Nusse, J.A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems. Physica D 57(1–2), 39–57 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. H.E. Nusse, J.A. Yorke, Border-collision bifurcations for piecewise smooth one-dimensional maps. Int. J. Bifurcat. Chaos 5(1), 189–207 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. L.J. Penkowski, K.E. Pruzinsky, Fundamentals of a pulsewidth modulated power circuit. IEEE Trans. Ind. Appl. IA–8(5), 584–592 (1972)

    Article  Google Scholar 

  26. J.J. Pollack, Advanced pulsewidth modulated inverter techniques. IEEE Trans. Ind. Appl. IA–8(2), 145–154 (1972)

    Article  Google Scholar 

  27. B. Robert, C. Robert, Border-collision bifurcation in a one-dimensional piecewise smooth map for a pwm current-programmed h-bridge inverter. Int. J. Contr. 75(16–17), 1356–1367 (2002)

    Article  MATH  Google Scholar 

  28. M. Sekikawa, N. Inaba, T. Tsubouchi, Chaos via duck solution breakdown in a piecewise linear van der pol oscillator driven by an extremely small periodic perturbation. Physica D 194(3–4), 227–249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. I. Sushko, A. Agliari, L. Gardini, Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: border-collision bifurcation curves. Chaos Solitons Fractals 29(3), 756–770 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. I. Sushko, L. Gardini, Center bifurcation for two-dimensional border-collision normal form. Int. J. Bifurcat. Chaos 18(4), 1029–1050 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. C.K. Tse, Flip bifurcation and chaos in three-state boost switching regulators. IEEE Trans. Circ. Syst. I 41(1), 16–23 (1994)

    Article  MathSciNet  Google Scholar 

  32. C.K. Tse, Complex Behavior of Switching Power Converters (CRC, Boca Raton, 2003)

    Book  Google Scholar 

  33. G. Yuan, S. Banerjee, E. Ott, J.A. Yorke, Border-collision bifurcations in the buck converter. IEEE Trans. Circ. Syst. I 45(7), 707–716 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. X. Zhao, H. Liu, J. Zhang, H. Li, Multiple-mode observer design for a class of switched linear systems. IEEE Trans. Autom. Sci. Eng. (2013). doi:10.1109/TASE.2013.2281466

    Google Scholar 

  35. X. Zhao, L. Zhang, P. Shi, H.R. Karimi, Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits. IEEE Trans. Ind. Electron. (2013). doi:10.1109/TIE.2013.2286568

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Professor S. Banerjee, Professor T. Saito, and Professor T. Ueta for their fruitful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuji Kousaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asahara, H., Izumi, Y., Tone, Y. et al. Effect of Time Lag in Response to Switching Signal in Interrupted Electric Circuit. Circuits Syst Signal Process 33, 2695–2707 (2014). https://doi.org/10.1007/s00034-014-9780-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9780-y

Keywords

Mathematics Subject Classification

Navigation