Skip to main content
Log in

A 3–10 GHz Ultra Wideband Receiver LNA in 0.13 \(\mu \)m CMOS

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A fully integrated low-power, low-complexity ultra wideband (UWB) 3–10 GHz receiver front-end in standard 130 nm CMOS technology is proposed for UWB radar sensing applications. The receiver front-end consists of a full UWB band low-noise amplifier and an on-chip diplexer. The on-chip diplexer has a 1 dB insertion loss and provides a \(-\)30 dB isolation. The diplexer switch was co-designed with the receiver input matching network to optimize the power matching while simultaneously achieving good noise matching performance. The receiver low-noise amplifier provides a 3–10 GHz bandwidth input matching and a power gain of 17 dB. The overall receiver front-end consumes an average power of 13 mW. The core area of the transceiver circuit is 500 \(\mu \)m by 700 \(\mu \)m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Aiello, Roberto: challenges for ultra-wideband (UWB) CMOS integration. IEEE MTT Symp. Digest. 1, 361–364 (2003)

    Google Scholar 

  2. A. Bevilacqua, A.M. Niknejad, An ultrawideband CMOS low-noise amplifier for 3.1–10.6 GHz wireless receivers. IEEE J. Solid-State Circuits 39(12), 2259–2268 (2004)

    Article  Google Scholar 

  3. P.-Y. Chang, S.S.H. Hsu, A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13-\(\mu \)m CMOS. IEEE Trans. Microw. Theor. Tech. 58(10), 2575–2581 (2010)

    Article  Google Scholar 

  4. Chu Ta-Shun, R. Jonathan, C. SangHyun, et al., A short-range UWB impulse-radio CMOS sensor for human feature detection. IEEE ISSCC Dig. Tech. Papers. 294–296 (2011).

  5. R. Dokania et al., An Ultralow-Power Dual-Band UWB Impulse Radio. IEEE Trans. Circuits Syst. II Express Briefs 57(7), 541–545 (2010)

    Article  Google Scholar 

  6. Federal Communications Commission, FCC notice of proposed rule-making, revision of part 15 of the commission’s rules regarding ultrawideband transmission system (FCC, Washington DC, ET-docket, 2002), pp. 98–153

    Google Scholar 

  7. H. Jin, Y.P. Zhang, A CMOS ultra-wideband impulse radio transceiver for interchip wireless communications. IEEE International Conference on Ultra-Wideband. (2007).

  8. M. Khurram, S.M.R. Hasan, A Full-band UWB common-gate band-pass noise matched g\(_{m}\)-boosted series peaked CMOS differential LNA. Analog Integr. Circuits Signal Process 76, 47–60 (2013)

    Article  Google Scholar 

  9. Q. Li, Y.P. Zhang, A 1.5V 2–9.6 GHz inductorless low-noise amplifier in 0.13um CMOS. IEEE Transact. Microw. Theor. Tech. 55(10), 2015–2023 (2007)

    Article  Google Scholar 

  10. R.C. Liu, K.L. Deng, H. Wang, A 0.6-22-GHz broadband CMOS distributed amplifier. IEEE Radio Frequency Integrated Circuits Symp. Dig. Papers. 103–106 (2003).

  11. T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge Univ. Press, New York, 2005)

    Google Scholar 

  12. B. Park, S. Choi, S. Hong, A low-noise amplifier with tunable interference rejection for 3.1-10.6-GHz UWB systems. IEEE Microw. Wirel. Compon. Lett. 20(1), 40–42 (2010)

    Article  Google Scholar 

  13. N. Paulino, J. Goes, A. Steiger-Carcao, A CMOS Variable Width Short-Pulse Generator Circuit for UWB RADAR Applications (Circuits and Systems, IEEE International Symposium , 2008)

  14. B.G. Perumana et al., Resistive-feedback CMOS low-noise amplifiers for multiband applications. IEEE Trans. Microw. Theor. Tech. 56(5), 1218–1225 (2008)

    Article  Google Scholar 

  15. M.T. Reiha, J.R. Long, A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise amplifier in 0.13 \(\mu \)m CMOS. IEEE J. Solid-State Circuits 42(5), 1023–1033 (2007)

    Article  Google Scholar 

  16. S.M. Rezaul Hasan, Analysis and design of a multi-stage CMOS band-pass low noise pre-amplifier for ultra-wide-band RF receiver. IEEE Trans. VLSI Syst. 18(4), 638–651 (2010)

    Article  Google Scholar 

  17. Solda Silvia et al., A 5 Mb/s UWB-IR transceiver front-end for wireless sensor networks in 0.13 \(\mu \)m CMOS. IEEE J. Solid-State Circuits 46(7), 1636–1646 (2011)

    Article  Google Scholar 

  18. T. Terada, S. Yoshizumi, M. Muqsith, Y. Sanada, T. Kuroda, A CMOS Ultra-wideband impulse radio transceiver for 1-Mb/s data communications and 2.5-cm range finding. IEEE J. Solid-State Circuits. 41(4), 891–898 (2006)

    Article  Google Scholar 

  19. Y.J. Wang, A. Hajimiri, A compact low-noise weighted distributed amplifier in CMOS. IEEE Int. Solid-State Circuits Conf. Tech. Dig. 220–221 (2009).

  20. D. Zito, SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Trans. Biomed. Circuits and Systems. 5(6), 503–510 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CMC Microsystems in Canada for the design tools and fabrication. This project is supported by the Natural Sciences and Engineering Research Council of Canada under Strategic Project Grant number STPGP 350545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xubo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Dinh, A. & Teng, D. A 3–10 GHz Ultra Wideband Receiver LNA in 0.13 \(\mu \)m CMOS. Circuits Syst Signal Process 33, 1669–1687 (2014). https://doi.org/10.1007/s00034-013-9726-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9726-9

Keywords

Navigation