Skip to main content
Log in

Square-Root-Domain Realization of Single-Cell Architecture of Complex TDCNN

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Square-root-domain (SRD) CMOS analog realization of a single cell architecture of the complex Temporal Derivative Cellular Neural Networks (TDCNNs) is introduced in this paper. TDCNN initiates time derivative ‘diffusion’ between CNN cells for non-separable spatiotemporal filtering applications, where the input to the CNN is an image that changes over time. The evaluation of the performance of the complex SRD TDCNN cell has been done using the Cadence Orcad software with TSMC 0.18-μm CMOS process model parameters. The provided simulated results confirm the validity of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Chao-Ming, L. Chih-Min, C. Ching-Tsan, D.S. Yeung, Hardware implementation of CMAC neural network using FPGA approach, in IEEE International Conference on Machine Learning and Cybernetics, vol. 4 (2007), pp. 2005–2011

    Google Scholar 

  2. H.P. Chen, Y.Z. Liao, W.T. Lee, Tunable mixed-mode OTA-C universal filter. Analog Integr. Circuits Signal Process. 58, 135–141 (2009)

    Article  Google Scholar 

  3. L.O. Chua, L. Yang, Cellular neural networks: theory. IEEE Trans. Circuits Syst. I 35, 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. L.O. Chua, T. Roska, Cellular Neural Networks and Visual Computing (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  5. L.O. Chua, T. Roska, The CNN paradigm. IEEE Trans. Circuits Syst. I 40, 147–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.A. De La Cruz-Blas, A.J. Lopez-Martin, A. Carlosena, 1.5 V tunable square root domain filter. Electron. Lett. 40, 213–214 (2004)

    Article  Google Scholar 

  7. C.A. De La Cruz-Blas, A.J. Lopez-Martin, A. Carlosena, Low-voltage nonlinear CMOS transconductors and their application to companding current-mode filters. Analog Integr. Circuits Signal Process. 38, 137–147 (2004)

    Article  Google Scholar 

  8. M. Eskiverli, A. Payne, Square-root domain filter design and performance. Analog Integr. Circuits Signal Process. 22, 231–243 (2000)

    Article  Google Scholar 

  9. S. Espejo, R. Carmona, R. Dominguez-Castro, A. Rodriguez-Vazquez, A CNN universal chip in CMOS technology. Int. J. Circuit Theory Appl. 24, 93–110 (1996)

    Article  Google Scholar 

  10. S. Espejo, R. Carmona, R. Dominguez-Castro, A. Rodriguez-Vazquez, A VLSI-oriented continuous-time CNN model. Int. J. Circuit Theory Appl. 24, 341–356 (1996)

    Article  Google Scholar 

  11. M.D.I. Henry, E.M. Drakakis, A.A. Bharath, On analog networks and mixed-domain spatio-temporal frequency response. IEEE Trans. Circuits Syst. I 55, 284–297 (2008)

    Google Scholar 

  12. M.D.I. Henry, E.M. Drakakis, A.A. Bharath, Preliminary results from an analog implementation of first-order TDCNN dynamics. Int. J. Circuit Theory Appl. 39, 665–678 (2011)

    Article  Google Scholar 

  13. M.D.I. Henry, E.M. Drakakis, A.A. Bharath, Synthesis of nonseparable 3D spatiotemporal bandpass filters on analog networks. IEEE Trans. Circuits Syst. I 55, 284–297 (2008)

    Google Scholar 

  14. J.J. Hopfield, Neural networks and physical systems with emergent computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  15. P. Kinget, M. Steyaert, An analog parallel array processor for real-time sensor signal processing, in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA (1996), pp. 92–93

    Google Scholar 

  16. V. Lanza, F. Corinto, M. Gilli, P.P. Civalleri, Analysis of nonlinear oscillatory network dynamics via time-varying amplitude and phase variables. Int. J. Circuit Theory Appl. 35, 623–644 (2007)

    Article  MATH  Google Scholar 

  17. K.W. Martin, Complex signal processing is not complex. IEEE Trans. Circuits Syst. I 51, 1823–1836 (2004)

    Article  Google Scholar 

  18. P.B.L. Meijer, Neural network applications in device and subcircuit modeling for circuit simulation. PhD thesis, Eindhoven University (1996)

  19. G.E. Paxienza, X. Ponce-Garcia, M. Balsi, X. Vilasis-Cardona, Robot vision with cellular neural networks: a practical implementation of new algorithms. Int. J. Circuit Theory Appl. 35, 449–462 (2006)

    Article  Google Scholar 

  20. C. Psychalinos, S. Vlassis, A systematic design procedure for square-root domain circuits based on the signal flow graph approach. IEEE Trans. Circuits Syst. I 49, 1702–1712 (2002)

    Article  Google Scholar 

  21. C. Psychalinos, Square-root domain wave filters. Int. J. Circuit Theory Appl. 35, 131–148 (2007)

    Article  MATH  Google Scholar 

  22. C. Psychalinos, Design of square-root domain filters by substituting the passive elements of the prototype filter by their equivalents. Int. J. Circuit Theory Appl. 36, 185–204 (2008)

    Article  Google Scholar 

  23. A. Rodriguez Vazquez, S. Espejo, R. Dominguez-Castro, R. Carmona, E. Roca, Mixed-signal CNN array chips for image processing. Proc. SPIE A2950, 218–229 (1996)

    Article  Google Scholar 

  24. E. Saatci, V. Tavsanoglu, Fingerprint image enhancement using CNN filtering techniques. Int. J. Neural Syst. 13, 453–460 (2003)

    Article  Google Scholar 

  25. J. Seul, K. Sung, Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems. IEEE Trans. Ind. Electron. 54, 265–271 (2007)

    Article  Google Scholar 

  26. E. Stoumpou, F.A. Khanday, C. Psychalinos, N.A. Shah, A low-voltage square-root domain nth order multifunction FLF filter topology. Analog Integr. Circuits Signal Process. 61, 315–322 (2009)

    Article  Google Scholar 

  27. E. Stoumpou, C. Psychalinos, Square-root domain linear transformation filters. Int. J. Circuit Theory Appl. 39, 719–731 (2011)

    Article  Google Scholar 

  28. J. von Neumann, The general and logical theory of automata, in Cerebral Mechanisms in Behavior—The Hixon Symposium, ed. by L.A. Jeffress (Wiley, New York, 1951)

    Google Scholar 

  29. R. Wagner, A. Molnar, F.S. Werblin, Analysis of the interaction between the retinal ON and OFF channels using CNN-UM models. Int. J. Circuit Theory Appl. 37, 87–108 (2009)

    Article  Google Scholar 

  30. G.J. Yu, C.Y. Huang, B.D. Liu, J.J. Chen, Design of square-root domain filters. Analog Integr. Circuits Signal Process. 43, 49–59 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments and suggestions, which enhanced the clarity of this manuscript. This research has been financed by the University Grants Commission (UGC) New Delhi India under Major Research Project Financial Assistance Scheme No. 39-558/2010 (SR), dated 10 Jan. 2011. We would like to profoundly acknowledge UGC for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farooq A. Khanday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanday, F.A., Psychalinos, C. & Shah, N.A. Square-Root-Domain Realization of Single-Cell Architecture of Complex TDCNN. Circuits Syst Signal Process 32, 959–978 (2013). https://doi.org/10.1007/s00034-012-9503-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9503-1

Keywords

Navigation