Skip to main content
Log in

High-Precision Differential-Input Buffered and External Transconductance Amplifier for Low-Voltage Low-Power Applications

Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Recently, the demand for low-voltage low-power integrated circuits design has grown dramatically. For battery-operated devices both the supply voltage and the power consumption have to be lowered in order to prolong the battery life. This paper presents an attractive approach to designing a low-voltage low-power high-precision differential-input buffered and external transconductance amplifier, DBeTA, based on the bulk-driven technique. The proposed DBeTA possesses rail-to-rail voltage swing capability at a low supply voltage of ±400 mV and consumes merely 62 μW. The proposed circuit is a universal active element that offers more freedom during the design of current-, voltage-, or mixed-mode applications. The proposed circuit is particularly interesting for biomedical applications requiring low-voltage low-power operation capability where the processing signal frequency is limited to a few kilohertz. An oscillator circuit employing a minimum number of active and passive components has been described in this paper as one of many possible applications. The circuit contains only a single active element DBeTA, two capacitors, and one resistor, which is very attractive for integrated circuit implementation. PSpice simulation results using the 0.18 μm CMOS technology from TSMC are included to prove the unique results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

References

  1. C. Acar, S. Ozoguz, A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectron. J. 157–160 (1999)

  2. D. Biolek, CDTA—building block for current-mode analog signal processing, in Proc ECCTD’03, Krakow, Poland (2003), pp. 397–400

    Google Scholar 

  3. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17, 15–32 (2008)

    Google Scholar 

  4. J.M. Carrillo, G. Torelli, R. Perez-Aloe, F. Duque-Carrillo, 1-V rail-to-rail bulk-driven CMOS OTA with enhanced gain and gain-bandwidth product, in Proc. ECCTD (2005), pp. 261–264

    Google Scholar 

  5. J.M. Carrillo, G. Torelli, R. Pérez-Aloe, J.M. Valverde, J.F. Duque-Carrillo, Single-pair bulk-driven CMOS input stage: A compact low-voltage analog cell for scaled technologies. Int. VLSI J. 251–257 (2010)

  6. G. Duzenli, Y. Kilic, H. Kuntman, A. Ataman, On the design of low-frequency filters using CMOS OTAs operating in the subthreshold region. Microelectron. J. 45–54 (1999)

  7. L.H. Ferreira, An ultra low-voltage ultra low power rail-to-rail CMOS OTA miller, in Proc. 2004 IEEE Asia-Pacific Conference on Circuits and Systems (2004), pp. 953–956

    Chapter  Google Scholar 

  8. A. Guzinski, M. Bialko, J.C. Matheau, Body-driven differential amplifier for application in continuous-time active C-filter, in Proc. ECCD, Paris, France (1987), pp. 315–319

    Google Scholar 

  9. Y. Haga, I. Kale, Bulk-driven flipped voltage follower, in Proc. IEEE ISCAS, (2009), pp. 2717–2720

    Google Scholar 

  10. N. Herencsár, J. Koton, K. Vrba, I. Lattenberg, New voltage-mode universal filter and sinusoidal oscillator using only single DBTA. Int. J. Electron. 365–379 (2010)

  11. R. Kenneth, S. Willy, Design of Analog Integrated Circuits and Systems (1994). 898 pp.

    Google Scholar 

  12. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 1–19 (2011)

  13. F. Khateb, N. Khatib, D. Kubánek, Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectron. J. 622–631 (2011)

  14. A. Kumar, G.K. Sharma, Bulk driven circuits for low voltage applications. J. Act. Passiv. Electron. Devices 8, 237–245 (2009)

    Google Scholar 

  15. G.K. Lim, T.H. Teo, A low-power low-voltage amplifier for heart rate sensor, in Proc. APCCAS (2006), pp. 502–505

    Google Scholar 

  16. S.-W. Pan, C.-C. Chuang, C.-H. Yang, Y.-S. Lai, A novel OTA with dual bulk-driven input stage, in Proc. ISCAS (2009), pp. 2721–2724

    Google Scholar 

  17. G. Raikos, S. Vlassis, 0.8 V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 425–432 (2010)

  18. S.S. Rajput, S.S. Jamuar, Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 24–42 (2002)

  19. F. Rezaei, S.J. Azhari, Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter. Microelectron. J. 827–836 (2011)

  20. H. Roh, H. Lee, Y. Choi, J. Roh, A 0.8-V 816-nW delta–sigma modulator for low-power biomedical applications. Analog Int. Circuits Signal Process. 101–106 (2010)

  21. J. Rosenfeld, M. Kozak, E.G. Friedman, A bulk-driven CMOS OTA with 68 db DC gain, in Proc. ICECS (2004), pp. 5–8

    Google Scholar 

  22. K. Salama, A. Soliman, Novel MOS-C quadrature oscillator using the differential current voltage conveyor, in Proc. of the 42nd Midwest Symposium on Circuits and Systems—MWSCAS’99, Las Cruces, USA (1999), pp. 279–282

    Google Scholar 

  23. W. Sansen, Analog design challenges in nanometer CMOS technologies, in Proc. IEEE Asian Solid-State Circuits Conference (2007), pp. 5–9

    Google Scholar 

  24. A. Sedra, K.C. Smith, A second generation current conveyor and its application. IEEE Trans. CT-17, 132–134 (1970)

    Google Scholar 

  25. C. Urban, J.E. Moon, P.R. Mukund, Designing bulk-driven MOSFETs for ultra-low-voltage analogue applications. Semicond. Sci. Technol. 25, 1–8 (2010)

    Article  Google Scholar 

  26. S. Vlassis, G. Raikos, Bulk-driven differential voltage follower. Electron. Lett. 45, 1276–1277 (2009)

    Article  Google Scholar 

  27. S. Yan, E. Sanchez-Sinencio, Low-voltage analog circuit design techniques. A tutorial IEICE. Trans. Analog Integr. Circuits Syst. 179–196 (2000)

  28. L. Yu-Lung, Y. We-Bin, C. Ting-Sheng, C. Kuo-Hsing, Designing an ultralow-voltage phase-locked loop using a bulk-driven technique. IEEE Trans. Circuits Syst. II 56(5), 339–343 (2009)

    Article  Google Scholar 

  29. L. Zhang, X. Zhang, E. El-Masry, A highly linear bulk-driven CMOS OTA for continuous-time filters. Analog Integr. Circuits Signal Process. 229–236 (2008)

  30. Z. Zhu, J. Mo, Y. Yang, A low voltage bulk-driving PMOS cascode current mirror. J. Circuits Syst. 30–33 (2007)

Download references

Acknowledgements

This research has been supported by Czech Science Foundation projects Nos. GA102/11/1379, 102/09/1681, and FP-S-11-3/1417 and by Brno University of Technology research project No. FEKT-S-11-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Khateb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khateb, F., Kaçar, F., Khatib, N. et al. High-Precision Differential-Input Buffered and External Transconductance Amplifier for Low-Voltage Low-Power Applications. Circuits Syst Signal Process 32, 453–476 (2013). https://doi.org/10.1007/s00034-012-9470-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9470-6

Keywords

Navigation