Skip to main content
Log in

Automatic Synthesis of VFs and VMs by Applying Genetic Algorithms

  • Published:
Circuits, Systems & Signal Processing Aims and scope Submit manuscript

Abstract

An automatic synthesis method is introduced to design voltage followers (VFs) and voltage mirrors (VMs) by performing evolutionary operations. It is shown that the nullor element is useful to introduce a new genetic representation to codify the behavior of the VF by a chromosome divided by four genes: small-signal (genSS), synthesis of the nullor by MOSFET (genSMos), bias (genBias), and synthesis of current mirrors (genCM). Further, it is shown that the behavior of the VM can be codified by evolving the chromosome of the VF. The proposed synthesis method uses SPICE to evaluate the fitness of the VF and VM. Finally, we show the synthesis of several VFs and VMs which are designed using standard CMOS technology of 0.35 μm. The applications and evolution of the VF and VM to synthesize more complex devices such as current conveyors (CCs) and inverting CCs are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Aggarwal, Novel canonic current mode DDCC based SRCO synthesized using a genetic algorithm. Analog Integr Circ Sig Process, Vol. 40, pp. 83–85, 2004.

    Article  Google Scholar 

  2. A. Arbel, Towards a perfect CMOS CCII. Analog Integr Circ Sig Process, Vol. 12, pp. 119–132, 1997.

    Article  Google Scholar 

  3. A. Awad, A. M. Soliman, Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. International Journal of Electronics, Vol. 86, No. 4, pp. 413–432, 1999.

    Article  Google Scholar 

  4. A. Awad, A. M. Soliman, On the voltage mirrors and the current mirrors. Analog Integr Circ Sig Process, Vol. 2, pp. 79–81, 2002.

    Article  Google Scholar 

  5. D. F. Bowers, A precision current-feedback operational amplifier. IEEE Bipolar Circuits and Technology Meeting (BCTM), pp. 68–70, 1988.

  6. D. F. Bowers, Applying current feedback to voltage amplifier. IEE circuits and systems publication, London: Peter Peregrinus, pp. 569–595, 1990, chapter 16.

    Google Scholar 

  7. H. P. Chen, M. T. Lin, W. S. Yang, Novel first-order non-inverting and inverting output of all-pass filter at the same configuration using ICCII. IEICE Transactions on Electronics, Vol. E89-C, No. 6, pp. 865–867, 2006.

    Article  Google Scholar 

  8. M. Fakhfakh, M. Loulou, N. Masmoudi, Optimizing performances of switched current memory cells through a heuristic. Analog Integr Circ Sig Process, Vol. 50, No. 2, pp. 115–126, 2007.

    Article  Google Scholar 

  9. M. Fakhfakh, M. Loulou, N. Masmoudi, C. Sánchez-López, E. Tlelo-Cuautle, Symbolic noise figure analysis of CCII. Fourth International Multi-Conference on Systems, Signals & Devices, Vol. IV, Hammamet, Tunisia, March 19–22, 2007.

  10. J. B. Grimbleby, Automatic analogue circuit synthesis using genetic algorithms. IEE Proc. Circuits, Devices and Systems, Vol. 147, No. 6, pp. 319–323, 2000.

    Article  Google Scholar 

  11. S. S. Gupta, R. Senani, New single-resistance-controlled oscillator configurations using unity-gain cells. Analog Integr Circ Sig Process, Vol. 6, pp. 111–119, 2006.

    Article  Google Scholar 

  12. K. Hayatleh, A. A. Tammam, B. L. Hart, Novel input stages for current feedback operational amplifiers. Analog Integr Circ Sig Process, Vol. 50, pp. 163–183, 2007.

    Article  Google Scholar 

  13. M. A. Ibrahim, H. Kuntman, S. Ozcan, O. Suvak, O. Cicekoglu, New first-order inverting-type second-generation current conveyor-based all-pass sections including canonical forms. Journal: Electrical Engineering, Vol. 86, No. 5, pp. 299–301, 2004.

    Google Scholar 

  14. J. R. Koza, L. W. Jones, M. A. Keane, M. J. Streeter, S. H. Al-Sakran, Toward automated design of industrial-strength analog circuits by means of genetic programming, Genetic Programming Theory and Practice II, pp. 121–142, 2004.

  15. P. Kumar, R. Senani, Bibliography on nullors and their applications in circuit analysis, synthesis and design. Analog Integr Circ Sig Process, Vol. 33, pp. 65–76, 2002.

    Article  Google Scholar 

  16. C. Mattiussi, D. Floreano, Analog genetic encoding for the evolution of circuits and networks. IEEE Transactions on Evolutionary Computation, 2006. doi:10.1109/TEVC.2006.886801.

    Google Scholar 

  17. T. McConaghy, P. Palmers, G. Gielen, M. Steyaert, Simultaneous multi-topology multi-objective sizing across thousands of analog circuit topologies. IEEE DAC, pp. 944–947, 2007.

  18. S. Minaei, E. Yuce, O. Cicekoglu, ICCII-Based voltage-mode filter with single input and six outputs employing grounded capacitors. Circuits, Systems and Signal Processing, Vol. 25, No. 4, pp. 559–566, 2006.

    Article  MATH  Google Scholar 

  19. S. B. Salem, M. Fakhfakh, D. S. Masmoudi, M. Loulou, P. Loumeau, N. Masmoudi, A high performances CMOS CCII and high frequency applications. Analog Integr Circ Sig Process, Vol. 49, No. 1, pp. 71–78, 2006.

    Article  Google Scholar 

  20. Z. R. Salem, M. A. Pacheco, M. Vellasco, Evolutionary Electronics: Automatic design of electronic circuits and systems by genetic algorithms, New York: CRC Press, 2002

    Google Scholar 

  21. H. Schmid, Approximating the universal active element. IEEE Trans. on Circuits and Systems II, Vol. 47, No. 11, pp. 1160–1169, 2000.

    Article  Google Scholar 

  22. A. S. Sedra, K. C. Smith, A second generation current conveyor and its application. IEEE Trans. Circuit Theory, Vol. 17, pp. 132–134, 1970.

    Google Scholar 

  23. A. S. Sedra, K. C. Smith, The current conveyor: A new circuit building block. Proc. IEEE, Vol. 56, pp. 1368–1369, 1968.

    Article  Google Scholar 

  24. A. Somani, P. P. Chakrabarti, A. Patra, An evolutionary algorithm-based approach to automated design of analog and RF circuits using adaptive normalized cost functions. IEEE Trans. Evolutionary Computation, Vol. 11, No. 3, pp. 336–353, 2007.

    Article  Google Scholar 

  25. J. A. Svoboda, Current conveyors, operational amplifiers and nullors. IEE Proceedings, Part. G, Vol. 136, pp. 317–322, 1989.

    Google Scholar 

  26. E. Tlelo-Cuautle, M. A. Duarte-Villaseñor, J. M. García-Ortega, C. Sánchez-López, Designing SRCOs by combining SPICE and Verilog-A. International Journal of Electronics, Vol. 94, No. 4, pp. 373–379, 2007.

    Article  Google Scholar 

  27. E. Tlelo-Cuautle, D. Torres-Muñoz, L. Torres-Papaqui, On the computational synthesis of CMOS voltage followers. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E88-A, No. 12, pp. 3479–3484, 2005.

    Article  Google Scholar 

  28. A. Toker, H. Kuntman, O. Cicekoglu, M. Discigil, New oscillator topologies using inverting second-generation current conveyors. Turk J Elec Engin, Vol. 10, No. 1, pp. 119–129, 2002.

    Google Scholar 

  29. A. Toker, A. Zeki, Tunable active network synthesis using ICCIIs. International Journal of Electronics, Vol. 94, No. 4, pp. 335–351, 2007.

    Article  Google Scholar 

  30. D. Torres-Muñoz, E. Tlelo-Cuautle, Automatic biasing and sizing of CMOS analog integrated circuits. IEEE MWSCAS, pp. 915–918, 2005.

  31. L. Torres-Papaqui, D. Torres-Muñoz, E. Tlelo-Cuautle, Synthesis of VFs and CFs by manipulation of generic cells. Analog Integr Circ Sig Process, Vol. 46, No. 2, pp. 99–102, 2006.

    Article  Google Scholar 

  32. N. Unno, N. Fujii, Automated design of analog circuits accelerated by use of simplified MOS model and reuse of genetic operations. IEICE Trans. Electron., Vol. E90-C, No. 6, pp. 1291–1298, 2007.

    Article  Google Scholar 

  33. H. Y. Wang, S. H. Chang, Y. L. Jeang, C. Y. Huang, Rearrangement of mirror elements. Analog Integr Circ Sig Process, Vol. 49, pp. 87–90, 2006.

    Article  Google Scholar 

  34. H. Y. Wang, C. T. Lee, C. Y. Huang, Characteristic investigation of new pathological elements. Analog Integr Circ Sig Process, Vol. 44, pp. 95–102, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Tlelo-Cuautle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tlelo-Cuautle, E., Duarte-Villaseñor, MA. & Guerra-Gómez, I. Automatic Synthesis of VFs and VMs by Applying Genetic Algorithms. Circuits Syst Signal Process 27, 391–403 (2008). https://doi.org/10.1007/s00034-008-9030-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-008-9030-2

Keywords

Navigation