Skip to main content
Log in

Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we present some rigorous results for an equilibrium problem arising from the study of fiber-reinforced composites. We consider a two-dimensional homogeneous anisotropic linear elastic body containing a thin semirigid inclusion. The semirigid inclusion is an anisotropic thin structure that stretches along one direction and moves like a rigid body possessing both rotational and translatory motion along the perpendicular direction. A pre-existing interfacial crack is subject to nonlinear conditions that do not allow the opposite crack faces to penetrate each other. We focus on a variational approach to modelling the physical phenomenon of equilibrium and to demonstrate that the energy release rate associated with perturbation of the crack along the interface is well defined. A higher regularity result for the displacement field is formulated and proved. Then, taking into account this result, we deduce representations for the energy release rates associated with local translation and self-similar expansion of the crack by means of path-independent energy integrals along smooth contour surrounding one or both crack tips. Finally, some relations between the integrals obtained are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budiansky, B., Rice, J.: Conservation laws and energy-release rates. J. Appl. Mech. 40, 201–203 (1973)

    Article  MATH  Google Scholar 

  2. Cherepanov, G.P.: Crack propagation in continuous media. J. Appl. Math. Mech. 31, 503–512 (1967)

    Article  MATH  Google Scholar 

  3. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  4. Freund, L.B.: Stress intensity factor calculations based on a conservation integral. Int. J. Solids Struct. 14, 241–250 (1978)

    Article  Google Scholar 

  5. Gao, Y.C., Mai, Y.W., Cotterell, B.: Fracture of fibre-reinforced materials. Z. Angew. Math. Mech. 39, 550–572 (1988)

    MATH  Google Scholar 

  6. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A. 221, 163–198 (1921)

    Article  Google Scholar 

  7. Gurney, A., Hunt, J.: Quasi-static crack propagation. Philos. Trans. R. Soc. Lond. Ser. A. 299, 508–524 (1967)

    Article  Google Scholar 

  8. Hutchinson, J.W., Jensen, H.M.: Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 9, 139–163 (1990)

    Article  Google Scholar 

  9. Karami, G., Malekzadeh, P.: A variational-based approach modeling for energy release rate of fiber/matrix interfacial fracture. Compos. Struct. 55, 185–194 (2002)

    Article  Google Scholar 

  10. Khludnev, A.M.: Singular invariant integral for elastic body with delaminated thin elastic inclusion. Q. Appl. Math. 72, 719–730 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khludnev, A.M., Faella, L., Popova, T.S.: Junction problem for rigid and Timoshenko inclusions in elastic bodies. Math. Mech. Solids. doi:10.1177/1081286515594655

  12. Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT Press, Boston (2000)

    Google Scholar 

  13. Khludnev, A.M., Leugering, G.: On elastic bodies with thin rigid inclusions and cracks. Math. Meth. Appl. Sci. 33, 1955–1967 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Khludnev, A.M., Leugering, G.R.: Delaminated thin elastic inclusion inside elastic bodies. Math. Mech. Complex Syst. 2, 1–21 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khludnev, A.M., Leugering, G.R.: On Timoshenko thin elastic inclusions inside elastic bodies. Math. Mech. Solids. 20, 495–511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khludnev, A., Popova, T.: Junction problem for rigid and semirigid inclusions in elastic bodies. Arch. Appl. Mech. 86, 1565–1577 (2016)

    Article  Google Scholar 

  17. Khludnev, A.M., Popova, T.S.: Junction problem for Euler–Bernoulli and Timoshenko elastic inclusions in elastic bodies. Q. Appl. Math. 74, 705–718 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khludnev, A.M. , Shcherbakov, V.V.: Singular path-independent energy integrals for elastic bodies with Euler–Bernoulli inclusions. Math. Mech. Solids. doi:10.1177/1081286516664208

  19. Khludnev, A.M., Sokołowski, J.: Griffith formulae for elasticity systems with unilateral conditions in domains with cracks. Eur. J. Mech. A Solids 19, 105–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knees, D.: Griffith-formula and \(J\)-integral for a crack in a power-law hardening material. Math. Models Methods Appl. Sci. 16, 1723–1749 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knees, D., Mielke, A.: Energy release rate for cracks in finite-strain elasticity. Math. Meth. Appl. Sci. 31, 501–528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kovtunenko, V.A.: Invariant energy integrals for the non-linear crack problem with possible contact of the crack surfaces. J. Appl. Math. Mech. 67, 99–110 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kovtunenko, V.A.: Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration. IMA J. Appl. Math. 71, 635–657 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kovtunenko, V.A., Kunisch, K.: Problem of crack perturbation based on level sets and velocities. Z. Angew. Math. Mech. 87, 809–830 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lazarev, N.P., Rudoy, E.M.: Shape sensitivity analysis of Timoshenko’s plate with a crack under the nonpenetration condition. Z. Angew. Math. Mech. 94, 730–739 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazarev, N.P.: Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion. Z. Angew. Math. Phys. 66, 2025–2040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marshall, D.B., Cox, B.N.: A \(J\)-integral method for calculating steady-state matrix cracking stresses in composites. Mech. Mater. 7, 127–133 (1988)

    Article  Google Scholar 

  28. Meng, Q., Wang, Z.: Theoretical analysis of interfacial debonding and fiber pull-out in fiber-reinforced polymer-matrix composites. Arch. Appl. Mech. 85, 745–759 (2015)

    Article  Google Scholar 

  29. Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967)

    MATH  Google Scholar 

  30. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  31. Rudoi, E.M.: Differentiation of energy functionals in the problem on a curvilinear crack with possible contact between the shores. Mech. Solids 42, 935–946 (2007)

    Article  Google Scholar 

  32. Rudoy, E.M.: Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with cut. Sib. Math. J. 50, 341–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rudoy, E.M.: Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body. Z. Angew. Math. Phys. 66, 1923–1937 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shcherbakov, V.V.: The Griffith formula and \(J\)-integral for elastic bodies with Timoshenko inclusions. Z. Angew. Math. Mech. 96, 1306–1317 (2016)

    Article  MathSciNet  Google Scholar 

  35. Sokołowski, J., Zolésio, J.: Introduction to Shape Optimization-Shape Sensitivity Analysis. Springer, New York (1992)

    Book  MATH  Google Scholar 

  36. Sternberg, J.K., Knowles, E.: On a class of conservation laws in linearized and finite elastostatics. Arch. Ration. Mech. Anal. 44, 187–211 (1972)

  37. Thomas, M.: Griffith formula for mode-III-interface-cracks in strain-hardening compounds. Mech. Adv. Matl. Struct. 16, 428–437 (2008)

    Article  Google Scholar 

  38. Zhang, S.Y.: Debonding and cracking energy release rate of the fiber/matrix interface. Compos. Sci. Technol. 58, 331–335 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Shcherbakov.

Additional information

To Prof. Alexander Khludnev on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, V. Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions. Z. Angew. Math. Phys. 68, 26 (2017). https://doi.org/10.1007/s00033-017-0769-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0769-9

Mathematics Subject Classification

Keywords

Navigation