Skip to main content
Log in

Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In dell’Isola et al. (Zeitschrift für Angewandte Math und Physik 66(6):3473–3498, 2015, Proc R Soc Lond A Math Phys Eng Sci 472(2185):1–23, 2016) pantographic sheets are proposed as a basic constituent for a novel metamaterial. In Part I, see Turco et al. (Zeitschrift für Angewandte Math und Physik, doi:10.1007/s00033-016-0713-4, 2016), two different numerical models are applied in order to design an experimental setup aimed to prove the effectiveness of introduced concept. The aim of this paper is to prove that the Hencky-type model introduced for planar pantographic sheets allows for the correct prediction, in a large range of imposed displacements, of the experimental measurements concerning specimens undergoing coupled bending and extensional deformations. The four-parameter numerical model introduced is shown to have a large range of applicability: Indeed without changing the values of the material parameters previously attributed in simple extensional tests to a specific specimen by a best-fit procedure, it is possible to forecast its behavior in all the considered type of imposed deformations. The measurements performed include the determination of reactive forces exerted by used hard devices, and the numerical modeling is able to predict very carefully quantitatively and qualitatively also this complex aspect of phenomenology, where previously attempted models seem to have failed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. dell’Isola F., Lekszycki T., Pawlikowski M., Grygoruk R., Greco L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2185), 1–23 (2016)

  3. Turco, E., Barcz, K., Pawlikowski, M., Rizzi, NL.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift für Angewandte Mathematik und Physik (2016). doi:10.1007/s00033-016-0713-4

  4. Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Seppecher, P., Alibert, J.J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol. 319, no. 1, p. 012018. IOP Publishing (2011)

  6. Alibert, J.J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für Angewandte Mathematik und Physik 66(5), 2855–2870 (2015)

  7. Ogden R.W.: Large deformation isotropic elasticity - On the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem. Technol. 46(2), 398–416 (1973)

    Article  Google Scholar 

  8. Giorgio, I.: Numerical identification procedure between a micro Cauchy model and a macro second gradient model for planar pantographic structures. Zeitschrift für Angewandte Mathematik und Mechanik. (2016). doi:10.1007/s00033-016-0692-5

  9. Turco E., dell’Isola F., Cazzani A., Rizzi N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für Angewandte Mathematik und Physik 67(4), 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  10. Turco E., Golaszewski M., Cazzani A., Rizzi N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  11. Placidi L., Andreaus U., Della Corte A., Lekszycki T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giorgio I., Della Corte A., dell’Isola F., Steigmann D.J.: Buckling modes in pantographic lattices. C. R. Mec. 344(7), 487–501 (2016)

    Article  Google Scholar 

  14. Steigmann D.J., dell’Isola F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Steigmann D.J., Faulkner M.G.: Variational teory for spatial rods. J. Elast. 33(1), 1–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. (submitted) (2016)

  17. dell’Isola F., Steigmann D., Della Corte A.: Synthesis of fibrous complex structures: Designing microstructure to deliver targeted macroscale response.. Appl. Mech. Rev. 67(6), 060804 (2015)

    Article  Google Scholar 

  18. Giorgio I., Grygoruk R., dell’Isola F., Steigmann D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  19. Scerrato D., Giorgio I., Rizzi N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für Angewandte Mathematik und Physik 67(3), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Zeitschrift für Angewandte Mathematik und Mechanik. (2016). doi:10.1002/zamm.201600066

  21. D’Agostino M.V., Giorgio I., Greco L., Madeo A., Boisse P.: Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements. Int. J. Solids Struct. 59, 1–17 (2015)

    Article  Google Scholar 

  22. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. (2016). doi:10.1007/s10665-016-9856-8

  23. Placidi, L., Dhaba, A.E.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids. (2015). doi:10.1177/1081286515616043

  24. dell’Isola F., Giorgio I., Andreaus U.: Elastic pantographic 2d lattices: A numerical analysis on static response and wave propagation.. Proc. Estonian Acad. Sci. 64(3), 219–225 (2015)

    Article  Google Scholar 

  25. dell’Isola F., Della Corte A., Greco L., Luongo A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  26. Cuomo M., dell’Isola F., Greco L.: Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres.. Zeitschrift für angewandte Mathematik und Physik 67(3), 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. (2016). doi:10.1007/s10665-016-9865-7

  28. dell’Isola F., Andreaus U., Placidi L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola.. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cazzani A., Malagù M., Turco E.: Isogeometric analysis of plane curved beams. Math. Mech. Solids 21(5), 562–577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cazzani A., Malagù M., Turco E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28(1), 139–156 (2016)

    Article  MathSciNet  Google Scholar 

  31. Cazzani A., Malagù M., Turco E., Stochino F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bilotta A., Formica G., Turco E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26, 1155–1175 (2010)

    Article  MATH  Google Scholar 

  33. Greco L., Cuomo M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  Google Scholar 

  34. Greco L., Cuomo M.: An implicit G 1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Greco L., Cuomo M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    Article  MathSciNet  Google Scholar 

  36. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite elements and isogeometric analysis of the whole spectrum of Timoshenko beams. Zeitschrift für Angewandte Mathematik und Mechanik. (2016). doi:10.1002/zamm.201500280:1-25

  37. Piccardo G., Ranzi G., Luongo A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Piccardo G., Ranzi G., Luongo A.: A direct approach for the evaluation of the conventional modes within the gbt formulation. Thin Walled Struct. 74, 133–145 (2014)

    Article  Google Scholar 

  39. Misra A., Poorsolhjouy P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1), 215–234 (2016)

    Article  MathSciNet  Google Scholar 

  40. Altenbach J., Altenbach H., Eremeyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  MATH  Google Scholar 

  41. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids. (2015). doi:(10.1177/1081286515582862)

  42. Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)

  43. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

  44. Caggegi C., Pensée V., Fagone M., Cuomo M., Chevalier L.: Experimental global analysis of the efficiency of carbon fiber anchors applied over cfrp strengthened bricks. Constr. Build. Mater. 53, 203–212 (2014)

    Article  Google Scholar 

  45. Tedesco, F., Bilotta, A., Turco, E.: Multiscale 3D mixed FEM analysis of historical masonry constructions. Eur. J. Environ. Civ. Eng. (2016). doi:10.1080/19648189.2015.1134676

  46. Tomic A., Grillo A., Federico S.: Poroelastic materials reinforced by statistically oriented fibres: numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civ. Eng. (2016). doi:10.1080/19648189.2015.1134673:1-46

  48. Lekszycki T., Olhoff N., Pedersen J.J.: Modelling and identification of viscoelastic properties of vibrating sandwich beams. Compos. Struct. 22(1), 15–31 (1992)

    Article  Google Scholar 

  49. Bilotta A., Turco E.: A numerical study on the solution of the Cauchy problem in elasticity. Int. J. Solids Struct. 46, 4451–4477 (2009)

    Article  MATH  Google Scholar 

  50. Bilotta A., Morassi A., Turco E.: Reconstructing blockages in a symmetric duct via quasi-isospectral horn operators. J. Sound Vib. 366, 149–172 (2016)

    Article  Google Scholar 

  51. Bilotta, A., Turco, E.: Numerical sensitivity analysis of corrosion detection. Math. Mech. Solids. (2014). doi:10.1177/1081286514560093:1-17

  52. Alessandrini G., Bilotta A., Formica G., Morassi A., Rosset E., Turco E.: Evaluating the volume of a hidden inclusion in an elastic body. J. Comput. Appl. Math. 198(2), 288–306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Alessandrini G., Bilotta A., Morassi A., Turco E.: Computing volume bounds of inclusions by EIT measurements. J. Sci. Comput. 33(3), 293–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Turco E.: Identification of axial forces on statically indeterminate pin-jointed trusses by a nondestructive mechanical test. Open Civ. Eng. J. 7, 50–57 (2013)

    Article  Google Scholar 

  55. Buffa, F., Cazzani, A., Causin, A., Poppi, S., Sanna, G.M., Solci, M., Stochino, F., Turco, E.: The Sardinia Radio Telescope: a comparison between close range photogrammetry and FE models. Math. Mech. Solids. (2015). doi:10.1177/1081286515616227:1-22

  56. Stochino, F., Cazzani, A., Poppi, S., Turco, E.: Sardinia Radio Telescope finite element model updating by means of photogrammetric measurements. Math. Mech. Solids. (2015). doi:10.1177/1081286515616046:1-17

  57. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  58. Cazzani A., Stochino F., Turco E.: On the whole spectrum of Timoshenko beams Part I: a theoretical revisitation. Zeitschrift für Angewandte Mathematik und Physik 67(24), 1–30 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Cazzani A., Stochino F., Turco E.: On the whole spectrum of Timoshenko beams. Part II: further applications. Zeitschrift für Angewandte Mathematik und Physik 67(25), 1–21 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Andreaus U., Baragatti P., Placidi L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(3), 375–398 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Andreaus U., Baragatti P., Placidi L.: Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int. J. Non-Linear Mech. 80, 96–106 (2016)

    Article  Google Scholar 

  62. Turco E., dell’Isola F., Rizzi N.L., Grygoruk R., Müller W.N., Liebold C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  63. D’Annibale F., Rosi G., Luongo A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gabriele, S., Rizzi, N.L., Varano, V.: On the imperfection sensitivity of thin-walled frames. In: Topping, B.H.V. (ed.) Proceedings of the Eleventh International Conference on Computational Structures Technology, vol. 99. Civil-Comp Press, Stirlingshire (2012). doi:10.4203/ccp.99.15

  65. Pignataro M., Ruta G., Rizzi N.L., Varano V.: Effects of warping constraints and lateral restraint on the buckling of thin-walled frames. ASME Int. Mech. Eng. Congr. Expos. 10, 803–810 (2010)

    Google Scholar 

  66. Rizzi N., Varano V., Gabriele S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin Walled Struct. 68, 124–134 (2013)

    Article  Google Scholar 

  67. Gabriele, S., Rizzi, N., Varano, V.: A 1D higher gradient model derived from Koiter’s shell theory. Math. Mech. Solids 21(6), 737–746 (2016)

  68. AminPour H., Rizzi N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Gabriele S., Rizzi N.L., Varano V.: A 1D nonlinear TWB model accounting for in plane cross-section deformation. Int. J. Solids Struct. 94–95, 170–178 (2016)

    Article  Google Scholar 

  70. AminPour, H., Rizzi, N.L.: On the continuum modelling of carbon nano tubes. In: Kruis, J., Tsompanakis, Y., Topping, B.H.V. (eds.) Proceedings of the 15th International Conference on Civil, Structural and Environmental Engineering Computing, vol. 108. Civil-Comp Press, Stirlingshire (2015)

  71. Gabriele, S., Rizzi, N.L., Varano, V.: A one-dimensional nonlinear thin walled beam model derived from Koiter shell theory. In: Topping, B.H.V., Iványi, P. (eds.) Proceedings of the 12th International Conference on Computational Structures Technology. Civil-Comp Press, Stirlingshire (2014)

  72. AminPour, H., Rizzi, N.L., Salerno, G.P.: A one-dimensional beam model for single-wall carbon nano tube column buckling. In: Topping, B.H.V., Iványi, P. (eds.) Proceedings of the 12th International Conference on Computational Structures Technology, vol. 106. Civil-Comp Press, Stirlingshire (2014)

  73. Rizzi, N.L., Varano, V.: On the postbuckling analysis of thin-walled frames. In: Topping, B.H.V., Tsompanakis, Y. (eds.) Proceedings of the 13th International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Stirlingshire (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Turco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turco, E., Barcz, K. & Rizzi, N.L. Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence. Z. Angew. Math. Phys. 67, 123 (2016). https://doi.org/10.1007/s00033-016-0714-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0714-3

Mathematics Subject Classification

Keywords

Navigation