Skip to main content
Log in

A fluid–structure interaction model with interior damping and delay in the structure

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A coupled system of partial differential equations modeling the interaction of a fluid and a structure with delay in the feedback is studied. The model describes the dynamics of an elastic body immersed in a fluid that is contained in a vessel, whose boundary is made of a solid wall. The fluid component is modeled by the linearized Navier-Stokes equation, while the solid component is given by the wave equation neglecting transverse elastic force. Spectral properties and exponential or strong stability of the interaction model under appropriate conditions on the damping factor, delay factor and the delay parameter are established using a generalized Lax-Milgram method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt W., Batty C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 360, 837–852 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avalos G., Bucci F.: Rational rates of uniform decay for strong solutions to a fluid-structure PDE system. J. Differ. Equ. 258, 4398–4423 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avalos G., Triggiani R.: The coupled PDE system arising in fluid-structure interaction, Part I: Explicit semigroup generator and its spectral properties. Contemp. Math. 440, 15–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avalos G., Triggiani R.: Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discr. Cont. Dyn. Syst. 2, 417–447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avalos G., Triggiani R.: Rational decay rates for a PDE heat-structure interaction: a frequency domain approach. Evol. Equ. Control Theory 2, 233–253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avalos G., Triggiani R.: Fluid structure interaction with and without internal dissipation of the structure : A contrast study in stability. Evol. Equ. Control Theory 2, 563–598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avalos G., Lasiecka I., Trigianni R.: Higher regularity of a coupled parabolic-hyperbolic fluid structure interactive system. Georgian Math. J. 15, 403–437 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Barbu V., Grujić Z., Lasiecka I., Tuffaha A.: Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model. Contemp. Math. 440, 55–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barbu V., Grujić Z., Lasiecka I., Tuffaha A.: Smoothness of weak solutions to a nonlinear fluid-structure interaction model. Indiana U. Math. J. 57, 1173–1207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Datko R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedback. SIAM J. Control Optim. 26, 697–713 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Datko R., Lagnese J., Polis P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim 24, 152–156 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desch W., Fas̆angová E., Milota J., Propst G.: Stabilization through viscoelastic boundary damping: a semigroup approach. Semigroup Forum 80, 405–415 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engel K.J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations, 2nd ed. Springer, Berlin (2000)

    MATH  Google Scholar 

  14. Du Q., Gunzburger M.D., Hou L.S., Lee J.: Analysis of a linear fluid-structure interaction problem. Discr. Contin. Dyn. Syst. 9, 633–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  16. Kirane M., Said-Houari B.: Existence and asymptotic stability of a viscoelastic wave equation with delay. Z. Angew. Math. Phys. 62, 1065–1082 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. LasieckaLu Y.: Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction. Semigroup Forum 82, 61–82 (2011)

    Article  MathSciNet  Google Scholar 

  18. Lasiecka I., Lu Y.: Interface feedback control stabilization of a nonlinear fluid-structure interaction. Nonlinear Anal. 75, 1449–1460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasiecka I., Seidman T.: Strong stability of elastic control systems with dissipative saturating feedback. Syst. Control Lett. 48, 243–252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions J.L., Magenes E.: Non-Homogeneous Boundary Value Problems And Applications, Vol. 1. Springer, New York (1972)

    Book  MATH  Google Scholar 

  21. Lyubich Y.I., Phong V.Q.: Asymptotic stability of linear differential equations in Banach spaces. Studia Matematica LXXXVII, 37–42 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Lu Y.: Stabilization of a fluid structure interaction with nonlinear damping. Control Cybern. 42, 155–181 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Lu Y.: Uniform decay rates for the energy in nonlinear fluid structure interaction with monotone viscous damping. Palest. J. Math. 2, 215–232 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Nicaise S., Pignotti C.: Stability and instability results of the wave equation with a delay term in boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peralta G., Propst G.: Stability and boundary controllability of a linearized model of flow in an elastic tube. ESAIM: Control Optim. Calc. Var. 21, 583–601 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Quarteroni A., Valli A.: Numerical Approximations of Partial Differential Equations. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  27. Sohr H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Berlin (2001)

    Book  MATH  Google Scholar 

  28. Temam R.: Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001)

    MATH  Google Scholar 

  29. Tucsnak M., Weiss G.: Observation and Control for Operator Semigroups. Birkhäuser-Verlag, Basel (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Peralta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta, G. A fluid–structure interaction model with interior damping and delay in the structure. Z. Angew. Math. Phys. 67, 10 (2016). https://doi.org/10.1007/s00033-015-0611-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-015-0611-1

Mathematics Subject Classification

Keywords

Navigation