Skip to main content
Log in

Existence, uniqueness and construction of the solution of the energy transfer problem in a rigid and non-convex blackbody with temperature-dependent thermal conductivity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the steady-state (coupled) conduction–radiation heat transfer phenomenon in a non-convex opaque blackbody with temperature-dependent thermal conductivity. The mathematical description consists of a nonlinear partial differential equation subjected to a nonlinear boundary condition involving an integral operator that is inherently associated with the non-convexity of the body. The unknown is the absolute temperature distribution. The problem is rewritten with the aid of a Kirchhoff transformation, giving rise to linear partial differential equation and a new unknown. An iterative procedure is proposed for constructing the solution of the problem by means of a sequence of problems, each of them with an equivalent minimum principle. Proofs of convergence as well as existence and uniqueness of the solution are presented. An error estimate, for each element of the sequence, is presented too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Afrin N., Feng Z.C., Zhang Y., Chen J.K.: Inverse estimation of front surface temperature of a locally heated plate with temperature-dependent conductivity via Kirchhoff transformation. Int. J. Therm. Sci. 69, 53–60 (2013)

    Article  Google Scholar 

  3. Arpaci V.S.: Conduction Heat Transfer. Addison-Wesley, Massachusetts (1966)

    MATH  Google Scholar 

  4. Batty W., Snowden C.: Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity. Electron. Lett. 36(23), 1966–1968 (2000)

    Article  Google Scholar 

  5. Berger M.S.: Nonlinearity & Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis. Academic Press, London (1977)

    MATH  Google Scholar 

  6. Breuer J.: Heat transfer at high energy devices with prescribed cooling flow. Math. Method Appl. Sci. 30, 415–428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids. Clarendon, Oxford (1959)

    Google Scholar 

  8. Chantasiriwan S.: Steady-state determination of temperature-dependent thermal conductivity. Int. Commun. Heat Mass Transf. 29, 811–819 (2002)

    Article  Google Scholar 

  9. Gama R.M.S., Pessanha J.A.O., Parise J.A.R., Saboya F.E.M.: Analysis of a v-groove solar collector with a selective glass cover. Solar Energy 36(6), 509–519 (1986)

  10. Gama R.M.S., Corrêa E.D., Martins-Costa M.L.: An upper bound estimate for the steady-state temperature for a class of heat conduction problems wherein the thermal conductivity is temperature dependent. Int. J. Eng. Sci. 69, 77–83 (2013)

    Article  Google Scholar 

  11. Gama R.M.S.: A new mathematical model for energy transfer problems with radiative boundary conditions. Appl. Math. Model. 14(2), 96–103 (1990)

    Article  MATH  Google Scholar 

  12. Gama R.M.S.: Existence, uniqueness and construction of the solution of the energy transfer problem in a rigid and nonconvex black body. Zeitschrift für Angewandte Mathematik und Physik 42, 334–347 (1991)

    Article  MATH  Google Scholar 

  13. Gama R.M.S.: Numerical simulation of the (nonlinear) conduction/radiation heat transfer process in a nonconvex and black cylindrical body. J. Comput. Phys. 128, 341–350 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glassbrenner C.J., Slack G.A.: Thermal conductivity of silicon and germanium from 3 K to the Melting Point. Phys. Rev. 134, 1058–1069 (1964)

    Article  Google Scholar 

  15. Goldberg, Y., Levinshtein, M.E., Rumyantsev, S.L.: Silicon carbide (Sic). In: Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S. (eds.) Properties of advanced semiconductor materials GaN, AlN, SiC, BN, SiC, SiGe, pp. 93–148. Wiley (2001)

  16. Incropera F., Dewitt P.D.: Introduction to Heat Transfer, 3rd edition. Wiley, New York (1996)

    Google Scholar 

  17. Joyce W.: Thermal resistance of heat sinks with temperature-dependent conductivity. Solid State Electron. 18, 321–322 (1975)

    Article  Google Scholar 

  18. Kim S.: A simple direct estimation of temperature-dependent thermal conductivity with Kirchhoff transformation. Int. Commun. Heat Mass Trans. 28, 537–544 (2001)

    Article  Google Scholar 

  19. Martin T.J., Dulikravich G.S.: Inverse determination of temperature-dependent thermal conductivity using steady surface data on arbitrary objects. J. Heat Trans. 122, 450–459 (2000)

    Article  Google Scholar 

  20. Mierzwiczak M., Kolodziej J.A.: The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem. Int. J. Heat Mass Trans. 54, 790–796 (2011)

    Article  MATH  Google Scholar 

  21. Moitsheki R.J., Hayat T., Malik M.Y.: Some exact solutions for a fin problem with a power law temperature-dependent thermal conductivity. Nonlinear Anal. Real World Appl. 11, 3287–3294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Polyanin A.D., Zhurov A.I., Vyaz’min A.V.: Exact solutions of nonlinear heat and mass transfer equations. Theor. Found. Chem. Eng. 34(5), 403–415 (2000)

    Article  Google Scholar 

  23. Sluzalec A., Kleiber M.: Shape sensitivity analysis for nonlinear steady-state heat conduction problems. Int. J. Heat Mass Trans. 39, 2609–2613 (1996)

    Article  MATH  Google Scholar 

  24. Sparrow E.M., Cess R.D.: Radiation Heat Transfer. McGraw-Hill, New York (1978)

    Google Scholar 

  25. Taylor A.E.: Introduction to Functional Analysis. Wiley Toppan, Tokyo (1958)

    MATH  Google Scholar 

  26. Tomatis D.: Heat conduction in nuclear fuel by the Kirchhoff transformation. Ann. Nucl. Energy 57, 100–105 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Martins Saldanha da Gama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Gama, R.M.S. Existence, uniqueness and construction of the solution of the energy transfer problem in a rigid and non-convex blackbody with temperature-dependent thermal conductivity. Z. Angew. Math. Phys. 66, 2921–2939 (2015). https://doi.org/10.1007/s00033-015-0549-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0549-3

Mathematics Subject Classification

Keywords

Navigation