Skip to main content
Log in

Improved variational bounds for conductive periodic composites with 3D microstructures and nonuniform thermal resistance

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Improved variational bounds for the effective conductivity of a matrix-inclusion conductive periodic composite are obtained. The studied composite is macroscopically anisotropic with nonuniform interfacial thermal resistance between isotropic phases. The homogenization theory is applied to a three-dimensional heat conduction problem which is stated in terms of nondimensional parameters. The Biot number is explicitly given in the variational formulation of the local problems and in the related minimization problems. The approach is based on the Lipton–Vernescu variational principles which allow to derive narrower bounds by incorporating more detailed morphological information. The bounds depend on the concentration and the conductivity of each phase, the periodic distribution and the shape of the inclusions, the Biot number and the nonuniform interfacial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrianov I.V., Danishevs’kyy V.V., Weichert D.: Asymptotic determination of effective elastic properties of composite materials with fibrous square-shaped inclusions. Eur. J. Mech. A/Solids 21, 1019–1036 (2002)

    Article  MATH  Google Scholar 

  2. Auriault J.L., Ene H.I.: Macroscopic modeling of heat transfer in composites with interfacial thermal barrier. Int. J. Heat Mass Transf. 37(18), 2885–2892 (1994)

    Article  MATH  Google Scholar 

  3. Bakhvalov N., Panasenko G.P.: Homogenisation: Averaging Processes in Periodic Media. Kluwer, Dordrecht (1989)

    Book  MATH  Google Scholar 

  4. Bensoussan A., Lions J.L., Papanicolaou G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  5. Benveniste Y.: Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)

    Article  Google Scholar 

  6. Bezerra, J.S., Cruz, M.E., Matt, C.F.: Effective thermal conductivity computation 3-D parallelepipedonal-cell fibrous composites. In: Proceedings of State of the Industry: Advanced Materials, Applications, and Processing Technology. SAMPE 2011, ISBN: 978-1-934551-11-0, Long Beach, CA, USA (2011)

  7. Brailsford A.D., Major K.G.: The thermal conductivity of aggregates of several phases including porous materials. Br. J. Appl. Phys. 15, 313–319 (1964)

    Article  Google Scholar 

  8. Carson J.K., Lovatt S.J., Tanner D.J., Cleland A.C.: Thermal conductivity bounds for isotropic, porous materials. Int. J. Heat Mass Transf. 48(11), 2150–2158 (2005)

    Article  MATH  Google Scholar 

  9. Cheng H., Torquato S.: Effective conductivity of periodic arrays of spheres with interfacial resistance. Proc. R. Soc. Lond. A 45, 145–161 (1997)

    Article  Google Scholar 

  10. Cruz M.E.: Computational approaches for heat conduction in composite materials. In: Esteve, Y.V., Carlomagno, G.M., Brebbia, C.A. (eds.) Computational Methods and Experimental Measurements X., pp. 657–668. WIT Press, Southampton (2001)

    Google Scholar 

  11. Donato P., Monsurró S.: Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2(3), 247–273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunn M.L., Taya M., Hatta H., Takei T., Nakajima Y.: Thermal conductivity of hybrid short fiber composites. J. Compos. Mater. 27, 1493–1519 (1993)

    Article  Google Scholar 

  13. Ekeland I., Teman R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  14. Every A.G., Tzou Y., Hasselman D.P.H., Raj R.: The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall. Mater. 40, 123–129 (1992)

    Article  Google Scholar 

  15. Galka A., Telega J.J., Wojnar R.: Some computational aspects of homogenization of thermopiezoelectric composites. Comput. Assist. Mech. Eng. Sci. 3, 113–154 (1996)

    Google Scholar 

  16. Hashin Z., Shtrikman S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Article  MATH  Google Scholar 

  17. Hashin Z.: Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli. J. Mech. Phys. Solids 40, 767–781 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hasselman D.P.H., Johnson L.F.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21(6), 508–515 (1987)

    Article  Google Scholar 

  19. Hatta H., Takei T., Taya M.: Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 24(7), 1159–1172 (1986)

    Article  MATH  Google Scholar 

  20. Lipton R.: Heat conduction in fine scale mixtures with interfacial contact resistance. SIAM J. Appl. Math. 58(1), 55–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lipton R., Vernescu B.: Composite with imperfect interface. Proc. R. Soc. Lond. A 452, 329–358 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. López-Ruiz, G., Bravo-Castillero, J., Brenner, R., Cruz, M.E., Pérez-Fernández, L.D., Guinovart-Díaz, R., Rodríguez-Ramos, R.: Variational bounds in composites with nonuniform interfacial thermal resistance. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.02.048

  23. Matt C.F., Cruz M.E.: Application of a Multiscale Finite-Element Approach to Calculate the Effective Conductivity of Particulate Media. Comput. Appl. Math. 21, 429–460 (2002)

    MathSciNet  Google Scholar 

  24. Matt, C.F., Cruz, M.E.: Effective conductivity of longitudinally-aligned composites with cylindrically orthotropic short fibers. In: Proceedings of 12th International Heat Transfer Conference, vol. 3, pp.21–26. Grenoble, France (2002)

  25. Matt C.F., Cruz M.E.: Enhancement of the thermal conductivity of composites reinforced with anisotropic short fibers. J. Enhanc. Heat Transf. 13(1), 17–38 (2006)

    Article  Google Scholar 

  26. Matt C.F., Cruz M.E.: Effective thermal conductivity of composite materials with 3D microstructures and interfacial thermal resistance. Numer. Heat Transf. Part A Appl. 53(6), 577–604 (2008)

    Article  Google Scholar 

  27. Maxwell J.C.: A Treatise on Electricity and Magnetism, Vol. I. At the Clarendon Press, Oxford (1873)

    Google Scholar 

  28. Marcos-Gómez D., Ching-Lloyd J., Elizalde M.R., Clegg W.J., Molina-Aldareguia J.M.: Predicting the thermal conductivity of composite materials with imperfect interfaces. Compos. Sci. Technol. 70, 2276–2283 (2010)

    Article  Google Scholar 

  29. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  30. Mirmira, S.R., Fletcher L.S.: Comparative study of thermal conductivity of graphite fiber organic matrix composites. In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, Paper AJTE99-6439, San Diego, CA (1999)

  31. Pastor J.: Homogenization of linear piezoelectric media. Mech. Res. Commun. 24(2), 145–150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Périn F.: Bounds and asymptotic results for the effective electromagnetic properties of a locally periodic distribution of conducting inclusions in a conducting matrix. Eur. J. Mech. A/Solids 23, 139–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rocha R.P.A., Cruz M.E.: Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numer. Heat Transf. Part A 39(2), 179–203 (2001)

    Article  Google Scholar 

  34. Rayleigh, L.: (J. W. Strutt), On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag. Series 5, 34 (211), 481–502 (1892)

  35. Sanchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

  36. Torquato S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, pp. 552–631. Springer, New York (2002)

    Google Scholar 

  37. Wu L.: Bounds on the effective thermal conductivity of composites with imperfect interface. Int. J. Eng. Sci. 48, 783–794 (2010)

    Article  MATH  Google Scholar 

  38. Xu Y., Yagi K.: Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement. Comput. Mater. Sci. 30, 242–250 (2004)

    Article  Google Scholar 

  39. Zou M., Yu B., Zhang D.: An analytical solution for transverse thermal conductivities of unidirectional fibre composites with thermal barrier. J. Phys. D Appl. Phys. 35, 1867–1874 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bravo-Castillero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Ruiz, G., Bravo-Castillero, J., Brenner, R. et al. Improved variational bounds for conductive periodic composites with 3D microstructures and nonuniform thermal resistance. Z. Angew. Math. Phys. 66, 2881–2898 (2015). https://doi.org/10.1007/s00033-015-0540-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0540-z

Mathematics Subject Classification

Keywords

Navigation