Skip to main content
Log in

TEM wave radiation from a dielectric-filled coaxial waveguide with a large circumferential gap on its outer wall

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

TEM wave radiation from a dielectric-filled coaxial waveguide with a large circumferential gap on its outer wall is investigated rigorously by applying direct Fourier transform and reducing the problem into the solution of a modified Wiener–Hopf equation of the first type. Classical Wiener–Hopf procedure is applied by considering two different approaches for the factorization of the kernel function, and the Wiener–Hopf equation is solved via a set of Fredholm integral equations of the second type. The problem is also analyzed by applying a combination of Fourier transform and simple series representation, and the results are compared numerically. Besides, the effects of radii of the walls, relative permittivity, frequency, and the gap width on the scattered fields are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seran S., Donohoe J.P., Topsakal E.: Diffraction from a material loaded tandem slit. IEEE Trans. Antennas Propag. 57, 3500–3511 (2009)

    Article  Google Scholar 

  2. Büyükaksoy A., Çınar G., Serbest A.H.: Scattering of plane waves by a junction of a transmissive and soft/hard half-planes. Z. Angew. Math. Phys. 55, 483–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Melkumyan A.: On acoustic and electric waves diffraction in piezoelectric medium by a permeable half-plane crack. Z. Angew. Math. Phys. 58, 330–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee S.U., Eom H.J., Kwon J.H.: TEM mode in the GTEM cell. J. Electromagn. Waves Appl. 25, 519–526 (2011)

    Article  Google Scholar 

  5. Sautbekov S.S.: Diffraction of plane wave by strip with arbitrary orientation of wave vector. Prog. Electromagn. Res. M 21, 117–131 (2011)

    Article  Google Scholar 

  6. Moiola A., Hiptmair R., Perugia I.: Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62, 809–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sheingold L.S., Storer J.E.: Circumferential gap in a circular wave guide excited by a dominant circular-electric wave. J. Appl. Phys. 25, 545–552 (1954)

    Article  MATH  Google Scholar 

  8. Morita N., Nakanishi Y.: Circumferential gap in a TE01-mode transmitting multimode circular waveguide. IEEE Trans. Microwave Theory Tech. 16, 183–189 (1968)

    Article  Google Scholar 

  9. Chang D.C.: Equivalent circuit representation and characteristics of a radiating cylinder driven through a circumferential slot. IEEE Trans. Antennas Propag. 21, 792–796 (1973)

    Article  Google Scholar 

  10. Hurd R.A.: The field in a narrow circumferential slot in a coaxial waveguide. Can. J. Phys. 51, 946–955 (1973)

    Article  Google Scholar 

  11. Wait J.R., Hill D.A.: On the electromagnetic field of a dielectric coated coaxial cable with an interrupted shield. IEEE Trans. Antennas Propag. 23, 470–479 (1975)

    Article  Google Scholar 

  12. Wait J.R., Hill D.A.: Electromagnetic fields of a dielectric coated coaxial cable with an interrupted shield–quasi-static approach. IEEE Trans. Antennas Propag. 23, 679–682 (1975)

    Article  Google Scholar 

  13. Lawrie J.B.: Axisymmetric radiation from a finite gap in an infinite, rigid, circular duct. IMA J. Appl. Math. 40, 113–128 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elmoazzen Y.E., Shafai L.: Mutual coupling between parallel-plate waveguides. IEEE Trans. Microw. Theory Tech 21, 825–833 (1973)

    Article  Google Scholar 

  15. Elmoazzen Y.E., Shafai L.: Mutual coupling between two circular waveguides. IEEE Trans. Antennas Propag. 22, 751–760 (1974)

    Article  Google Scholar 

  16. Cho Y.K.: Analysis of a narrow slit in a parallel-plate transmission line: E polarization case. Electron Lett 23, 1105–1106 (1987)

    Article  Google Scholar 

  17. Park J.K., Eom H.J.: TM scattering by a gap on a circular waveguide. Microw. Opt. Technol. Lett. 37, 146–148 (2003)

    Article  Google Scholar 

  18. Çınar H., Çınar G.: Scattering of a TEM wave by a large circumferential gap on a coaxial waveguide, J. Electromag. Waves Appl. 27, 615– (2013)

    Article  Google Scholar 

  19. Kobayashi, K.: Some diffraction problems involving modified Wiener–Hopf geometries, Chap. 4. In: M. Hashimoto, M. Idemen, O. A. Tretyakov (eds.) Analytical and Numerical Methods in Electromagnetic Wave Theory, Science House, Tokyo (1993)

  20. Polat B.: Diffraction of acoustic waves by a cylindrical impedance rod of finite length. Z. Angew. Math. Mech. 79, 555–567 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Çınar, G., Büyükaksoy, A.: Plane wave diffraction by a slit in an impedance plane and a complementary impedance strip. Radio Sci. 39, (2004). doi:10.1029/2003RS002957

  22. Tayyar,  I.H., Büyükaksoy, A., Işıkyer, A.: Wiener–Hopf analysis of the parallel plate waveguide with finite length impedance loading. Radio Sci. 43, (2008). doi:10.1029/2007RS003768

  23. Mittra R., Lee S.W.: Analytical Techniques in the Theory of Guided Waves. McMillan, New York (1971)

    MATH  Google Scholar 

  24. Aksimsek S., Çınar G., Nilsson B., Nordebo S.: TEM wave scattering by a step discontinuity on the outer wall of a coaxial waveguide, IEEE Trans. Microw. Theory Tech. 61, 2783–2791 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Çınar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, H., Çınar, G. & Yanaz Çınar, Ö. TEM wave radiation from a dielectric-filled coaxial waveguide with a large circumferential gap on its outer wall. Z. Angew. Math. Phys. 66, 1299–1313 (2015). https://doi.org/10.1007/s00033-014-0445-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0445-2

Mathematics Subject Classification

Keywords

Navigation