Skip to main content
Log in

Analysis of a mixed space-time diffusion equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

An energy method is used to analyze the stability of solutions of a mixed space-time diffusion equation that has application in the unidirectional flow of a second-grade fluid and the distribution of a compound Poisson process. Solutions to the model equation satisfying Dirichlet boundary conditions are proven to dissipate total energy and are hence stable. The stability of asymptotic solutions satisfying Neumann boundary conditions coincides with the condition for the positivity of numerical solutions of the model equation from a Crank–Nicolson scheme. The Crank–Nicolson scheme is proven to yield stable numerical solutions for both Dirichlet and Neumann boundary conditions for positive values of the critical parameter. Numerical solutions are compared to analytical solutions that are valid on a finite domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayat T., Khan M., Siddiqui A.M., Asghar S.: Transient flows of a second grade fluid. Int. J. Non-Linear. Mech. 39, 1621 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hristov J.: Integral-balance solution to the Stokes’ first problem of a viscoelastic generalized second grade fluid. Therm. Sci. 16, 395 (2012)

    Article  Google Scholar 

  3. Wafo Soh C.: Comment on ‘A point source solution for unidirectional flow of a viscoelastic fluid’. Phys. Lett. A 372, 4041 (2008)

    Article  Google Scholar 

  4. Wafo Soh C.: Comment on ‘A point source solution for unidirectional flow of a viscoelastic fluid’. Phys. Lett. A 374, 2098 (2010)

    Article  MATH  Google Scholar 

  5. Wafo Soh C.: Probabilistic approach to diffusion in shear flows of generalized viscoelastic second-grade fluids. J. Stat. Mech. 110117, 1 (2010)

    Google Scholar 

  6. Cattaneo C.: Sulla conduzione del calore. Atti. Sem. Mat. Fis. Univ. Modena 3, 83 (1948)

    MathSciNet  Google Scholar 

  7. Rajagopal K.R.: A note on unsteady unidirectional flows of a non-Newtonian fluid flow. Int. J. Non-Linear. Mech. 17, 369 (1982)

    Article  MATH  Google Scholar 

  8. Rivlin R.S., Ericksen J.L.: Stress deformation relation for isotropic material. J. Ration. Mech. Anal. 4, 323 (1955)

    MATH  MathSciNet  Google Scholar 

  9. Dunn J.E., Fosdick R.L.: Thermodynamics stability and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Ration. Mech. Anal. 3, 191 (1974)

    Article  MathSciNet  Google Scholar 

  10. Fosdick R.L., Rajagopal K.R.: Anomalous features in the model of second-order fluids. Arch. Ration. Mech. Anal. 70, 145 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Momoniat E.: On the diffusion of a point source modelled by a mixed derivative equation. Phys. A 387, 2427 (2008)

    Article  MathSciNet  Google Scholar 

  12. Momoniat E.: A point source solution for unidirectional flow of a viscoelastic fluid. Phys. Lett. A 372, 4041 (2008)

    Article  MATH  Google Scholar 

  13. Momoniat E., McIntyre R., Ravindran R.: Numerical inversion of a Laplace transform solution of a diffusion equation with a mixed derivative term. Appl. Math. Comput. 209, 222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Joseph D.D., Preziosi L.: Addendum to the paper “Heat Waves”. Rev. Mod. Phys. 62, 375 (1990)

    Article  MathSciNet  Google Scholar 

  16. Joshi A.A., Majumdar A.: Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31 (1993)

    Article  Google Scholar 

  17. Qiu T.Q., Tien C.L.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35, 719 (1992)

    Article  Google Scholar 

  18. Qiu T.Q., Tien C.L.: Heat transfer mechanisms during short-pulse laser heating of metals. ASME J. Heat Transf. 115, 835 (1993)

    Article  Google Scholar 

  19. Dai W., Nassar R.: A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale. J. Comput. Appl. Math. 132, 431 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Momoniat E., Harley C.: Peaceman–Rachford ADI scheme for the two dimensional flow of a second-grade fluid. Int. J. Numer. Methods Heat Fluid Flow 22, 228 (2012)

    Article  MathSciNet  Google Scholar 

  21. Momoniat E.: A comparison of diffusion modelled by two mixed derivative equations. Mod. Phys. Lett. B 22, 2709 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Momoniat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momoniat, E. Analysis of a mixed space-time diffusion equation. Z. Angew. Math. Phys. 66, 1175–1186 (2015). https://doi.org/10.1007/s00033-014-0433-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0433-6

Mathematics Subject Classification

Keywords

Navigation