Skip to main content
Log in

An arbitrarily shaped inclusion with uniform eigencurvatures in an infinite plate, semi-infinite plate, two bonded semi-infinite plates or a circular plate

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Within the framework of the Kirchhoff–Love isotropic and homogeneous plate theory, we obtain, in a unified manner, the analytic solutions to the Eshelby’s problem of an inclusion of arbitrary shape with uniform eigencurvatures in an infinite plate, a semi-infinite plate, one of two bonded semi-infinite plates or a circular plate by means of conformal mapping and analytical continuation. The edge of the semi-infinite plate can be rigidly clamped, free or simply supported, while that of the circular plate can be rigidly clamped, free or perfectly bonded to the surrounding infinite plate. Several examples of practical and theoretical interests are presented to demonstrate the general method. In particular, the elementary expressions of the internal elastic fields of bending moments and deflections within an (n + 1)-fold rotational symmetric inclusion described by a five-term mapping function, a symmetric airfoil cusp inclusion, a symmetric lip cusp inclusion and an inclusion described by a rational mapping function in an infinite plate are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, L., Du, S.Y.: The elastic field caused by a circular cylindrical inclusion. Part I & II. ASME J. Appl. Mech. 62, 579–584 & 585–589 (1995)

    Google Scholar 

  2. Rodin G.J.: Eshelby’s inclusion problem for polygons and polyhedral. J. Mech. Phys. Solids 44, 1977–1995 (1996)

    Article  Google Scholar 

  3. Nozaki H., Taya M.: Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. ASME J. Appl. Mech. 64, 495–501 (1997)

    Article  MATH  Google Scholar 

  4. Sharma P., Sharma R.: On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. ASME J. Appl. Mech. 70, 418–425 (2003)

    Article  MATH  Google Scholar 

  5. Wang M.Z., Xu B.X.: The arithmetic mean theorem of Eshelby tensor for a rotational symmetrical inclusion. J. Elast. 77, 13–23 (2004)

    Article  MATH  Google Scholar 

  6. Li S., Sauer R., Wang G.: A circular inclusion in a finite domain I. The Dirichlet–Eshelby problem. Acta Mech. 179, 67–90 (2005

    Article  MATH  Google Scholar 

  7. Wang G., Li S., Sauer R.: A circular inclusion in a finite domain II. The Neumann–Eshelby problem. Acta Mech. 179, 91–110 (2005)

    Article  Google Scholar 

  8. Sauer R.A., Wang G., Li S.: The composite Eshelby tensors and their applications to homogenization. Acta Mech. 197, 63–96 (2008)

    Article  MATH  Google Scholar 

  9. Zheng Q.S., Zhao Z.H., Du D.X.: Irreducible structure, symmetry and average of Eshelby’s tensor fields in isotropic elasticity. J. Mech. Phys. Solids 54, 368–383 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zou W.N., He Q.C., Zheng Q.S.: Inclusions in a finite elastic body. Int. J. Solids Struct. 49, 1627–1636 (2012)

    Article  Google Scholar 

  11. Ru C.Q.: Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane. ASME J. Appl. Mech. 66, 315–322 (1999)

    Article  MathSciNet  Google Scholar 

  12. Ru C.Q., Schiavone P., Mioduchowski A.: Elastic fields in two jointed half-planes with an inclusion of arbitrary shape. Z Angew. Math. Phys. 52, 18–32 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ru C.Q.: Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta Mech. 160, 219–234 (2003)

    Article  MATH  Google Scholar 

  14. Wang X., Sudak L.J., Ru C.Q.: Elastic fields in two imperfectly bonded half-planes with a thermal inclusion of arbitrary shape. Z Angew. Math. Phys. 58, 488–509 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhou K., Hoh H.J., Wang X., Keer L.M., Pang J.H.L., Song B., Wang Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  16. Duong C.N., Yu J.: Analysis of a plate containing a polygon-shaped inclusion with a uniform eigencurvature. ASME J. Appl. Mech. 70, 404–407 (2003)

    Article  MATH  Google Scholar 

  17. Beom H.G.: Analysis of a plate containing an elliptic inclusion with eigencurvatures. Arch. Appl. Mech. 68, 422–432 (1998)

    Article  MATH  Google Scholar 

  18. Li S.F.: The micromechanics theory of classical plates: a congruous estimate of overall elastic stiffness. Int. J. Solids Struct. 37, 5599–5628 (2000)

    Article  MATH  Google Scholar 

  19. Yang K.J., Kang K.J., Beom H.G.: Thermal stress analysis for an inclusion with nonuniform temperature distribution in an infinite Kirchhoff plate. J. Therm. Stress. 28, 1123–1144 (2005)

    Article  Google Scholar 

  20. Xu B.X., Wang M.Z.: The quasi Eshelby property for rotational symmetrical inclusions of uniform eigencurvatures within an infinite plate. Proc. R. Soc. Lond. A 461, 2899–2910 (2005)

    Article  MATH  Google Scholar 

  21. Mohammadi P., Liu L.P., Sharma P.: A theory of flexoelectric membranes and effective properties of heterogeneous membranes. ASME J. Appl. Mech. 81, 011007 (2014)

    Article  Google Scholar 

  22. Savin G.N.: Stress Concentration Around Holes. Eugene Gros, translator, 1st edn. Pergamon Press, Oxford (1961)

    Google Scholar 

  23. Sih G.C., Rice J.R.: The bending of plates of dissimilar materials with cracks. ASME J. Appl. Mech. 31, 477–484 (1964)

    Article  Google Scholar 

  24. Cheng Z.Q., Reddy J.N.: Octet formalism for Kirchhoff anisotropic plates. Proc. R. Soc. Lond. A 458, 1499–1517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Odishelidze N., Criado-Aldeanueva F.: A mixed problem of plate bending for doubly connected domains with partially unknown boundaries in the presence of cyclic symmetry. Sci. China 53, 1884–1894 (2010)

    Google Scholar 

  26. Beom H.G., Kim I.B.: Analysis of a multilayered plate containing a cuboidal inclusion with eigenstrains. Mech. Mater. 31, 729–741 (1999)

    Article  Google Scholar 

  27. Suo Z.: Singularities interacting with singularities and cracks. Int. J. Solids Struct. 25, 1133–1142 (1989)

    Article  Google Scholar 

  28. Ekneligoda T.C., Zimmerman R.W.: Compressibility of two-dimensional pores having n-fold axes of symmetry. Proc. R. Soc. Lond. A 462, 1933–1947 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wu C.H.: Unconventional internal cracks, part I: symmetric variation of a straight crack. ASME J. Appl. Mech. 49, 62–68 (1982)

    Article  MATH  Google Scholar 

  30. Chen Y.Z.: Closed form solutions of T-stress in plain strain elasticity crack problems. Int. J. Solids Struct. 37, 1629–1637 (2000)

    Article  MATH  Google Scholar 

  31. Hasebe N., Inohara S.: Stress analysis of a semi-infinite plate with an oblique edge crack. Ingenieur-Archiv 49, 51–62 (1980)

    Article  MATH  Google Scholar 

  32. Hasebe N., Wang X.F.: Green’s functions of thin plate bending problem under fixed boundary. ASCE J. Eng. Mech. 126, 206–213 (2000)

    Article  Google Scholar 

  33. Li S.: On the micromechanics theory of Reissner–Mindlin plates. Acta Mech. 142, 47–99 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhou, K. An arbitrarily shaped inclusion with uniform eigencurvatures in an infinite plate, semi-infinite plate, two bonded semi-infinite plates or a circular plate. Z. Angew. Math. Phys. 66, 433–454 (2015). https://doi.org/10.1007/s00033-014-0408-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0408-7

Mathematics Subject Classification (2010)

Keywords

Navigation