Skip to main content
Log in

On a 3D isothermal model for nematic liquid crystals accounting for stretching terms

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the present contribution, we study a PDE system describing the evolution of a nematic liquid crystals flow under kinematic transports for molecules of different shapes. More in particular, the evolution of the velocity field u is ruled by the Navier–Stokes incompressible system with a stress tensor exhibiting a special coupling between the transport and the induced terms. The dynamics of the director field d is described by a variation of a parabolic Ginzburg–Landau equation with a suitable penalization of the physical constraint |d| = 1. Such equation accounts for both the kinematic transport by the flow field and the internal relaxation due to the elastic energy. The main aim of this contribution is to overcome the lack of a maximum principle for the director equation and prove (without any restriction on the data and on the physical constants of the problem) the existence of global in time weak solutions under physically meaningful boundary conditions on d and u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climent-Ezquerra B., Guillén-González F., Rodríguez-Bellido M.A.: Stability for nematic liquid crystals with stretching terms. Int. J. Bifur. Chaos Appl. Sci. Engrg. 20(9), 2937–2942 (2010)

    Article  MATH  Google Scholar 

  2. Coutand D., Shkoller S.: Well posedness of the full Ericksen–Leslie model of nematic liquid crystals. C.R. Acad. Sci. Paris. Sér. I 333, 919–924 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ericksen J.L.: Equilibrium theory of liquid crystals. In: Brown, G. (ed) Advances in Liquid Crystals, Vol. 26, pp. 233–398. Academic press, New York (1976)

    Google Scholar 

  4. Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals, preprint arXiv:1104.1339v1 (2011), pp. 1–21

  5. Feireisl E., Novotný A.: Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

  6. Grasselli M., Wu H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. Z. Angew. Math. Phys. 62, 979–992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jeffery G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Roy. Soc. Proc. 102, 161–179 (1922)

    Article  Google Scholar 

  8. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow, 2nd Edn. Mathematics and Its Applications, 2. Gordon and Breach, New York, London, Paris (1969)

  9. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. (French) Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leslie, F.: Theory of flow phenomena in liquid crystals. In: Brown, G. (Ed.) Advances in Liquid Crystals, Vol. 4. A.P., New York, pp. 1–81 (1978)

  11. Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin F.-H., Liu C.: Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14, 289–330 (2001)

    MathSciNet  Google Scholar 

  13. Lions J.-L.: Sur certaines équations paraboliques non linéaires. Bull. Soc. Math. France 93, 155–175 (1965)

    MathSciNet  MATH  Google Scholar 

  14. Lions J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  15. Liu C., Shen J.: On liquid crystal flows with free-slip boundary conditions. Discret. Contin. Dynam. Syst. 7, 307–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nečas, J.: Introduction to the theory of nonlinear elliptic equations, Teubner Texts in Mathematics, 52. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, (1983)

  17. Petzeltová, H., Rocca, E., Schimperna, G.: On the long-time behavior of some mathematical models for nematic liquid crystals, to appear on Calc. Var., doi:10.1007/s00526-012-0496-1, preprint arXiv:0901.1751v2 (2011), pp. 1–19

  18. Segatti A., Wu H.: Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows. SIAM J. Math. Anal. 43(6), 2445–2481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shkoller S.: Well-posedness and global attractors for liquid crystals on Riemannian manifolds. Comm. Part. Diff. Equ. 27, 1103–1137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discret. Contin. Dynam. Syst. 23, 455–475 (2009)

    Article  MATH  Google Scholar 

  21. Temam R.: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001)

    MATH  Google Scholar 

  22. Wu, H., Xu, X., Liu, C.: Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties, to appear on Calc. Var. Partial Differential Equations, doi:10.1007/s00526-011-0460-52011, preprint arXiv:0901.1751v2 (2010), pp. 1–26

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Rocca.

Additional information

C. Cavaterra was partially supported by MIUR-PRIN Grant 20089PWTPS “Mathematical Analysis for inverse problems towards applications”.

E. Rocca was supported by the FP7-IDEAS-ERC-StG Grant #256872 (EntroPhase).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavaterra, C., Rocca, E. On a 3D isothermal model for nematic liquid crystals accounting for stretching terms. Z. Angew. Math. Phys. 64, 69–82 (2013). https://doi.org/10.1007/s00033-012-0219-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0219-7

Mathematics Subject Classification

Keywords

Navigation