Skip to main content
Log in

Shallow water equations: viscous solutions and inviscid limit

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H −1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouchut F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhüser Verlag, Basel (2004)

    Book  MATH  Google Scholar 

  2. Bresch D., Desjardins B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Chen G.-Q.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci. 6, 75–120 (1986) (in English)

    MATH  Google Scholar 

  4. Chen G.-Q.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci. 8, 243–276 (1988) (in Chinese)

    Google Scholar 

  5. Chen G.-Q., Perepelitsa M.: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Commun. Pure Appl. Math. 63, 1469–1504 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen G.-Q., LeFloch Ph.G.: Compressible Euler equations with general pressure law. Arch. Ration. Mech. Anal. 153, 221–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen G.-Q., LeFloch Ph.G.: Existence theory for the isentropic Euler equations. Arch. Ration. Mech. Anal. 166, 81–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dafermos C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

    MATH  Google Scholar 

  9. Ding, X., Chen, G.-Q., Luo, P.: Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I)–(II). Acta Math. Sci. 5B, 483–500, 501–540 (1985) (in English)

  10. Ding, X., Chen, G.-Q., Luo, P.: Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I). Acta Math. Sci. 7A, 467–480 (1987) (in Chinese)

  11. Ding, X., Chen, G.-Q., Luo, P.: Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (II). Acta Math. Sci. 8A, 61–94 (1988) (in Chinese)

    Google Scholar 

  12. Ding X., Chen G.-Q., Luo P.: Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Commun. Math. Phys. 121, 63–84 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. DiPerna R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91, 1–30 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerbeau J.-F., Perthame B.: Derivation of viscous Saint-Venant system for laminar shallow water: numerical validation. Discrete Continuous Dyn. Syst. 1B, 89–102 (2001)

    MathSciNet  Google Scholar 

  15. Hoff D.: Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states. Z. Angew. Math. Phys. 49, 774–785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hugoniot H.: Sur la propagation du movement dans les corps et epécialement dans les gaz parfaits. J. Ecole Polytechnique 58, 1–125 (1889)

    Google Scholar 

  17. LeFloch Ph.G., Westdickenberg M.: Finite energy solutions to the isentropic Euler equations with geometric effects. J. Math. Pures Appl. 88, 386–429 (2007)

    MathSciNet  Google Scholar 

  18. Lions P.-L., Perthame B., Tadmor E.: Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163, 415–431 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions P.-L., Perthame B., Souganidis P.E.: Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun. Pure Appl. Math. 49, 599–638 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mascia C.: A dive into shallow water. Riv. Mat. Univ. Parma. 1, 77–149 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Mellet A., Vasseur A.: On the barotropic compressible Navier-Stokes equations. Commun. Partial Differ. Equ. 32, 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rankine W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond. 1960, 277–288 (1870)

    Google Scholar 

  23. Rayleigh, L.(Strutt, J.W.): Aerial plane waves of finite amplitude. Proc. R. Soc. Lond. 84A, 247–284 (1910)

    Google Scholar 

  24. Stokes G.G.: On a difficulty in the theory of sound. Philos. Mag. 33, 349–356 (1848)

    Google Scholar 

  25. Whitham, G.B.: Linear and Nonlinear Waves, Reprint of the 1974 original. Wiley, New York (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GQ., Perepelitsa, M. Shallow water equations: viscous solutions and inviscid limit. Z. Angew. Math. Phys. 63, 1067–1084 (2012). https://doi.org/10.1007/s00033-012-0209-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0209-9

Mathematics Subject Classification

Keywords

Navigation