Skip to main content
Log in

Robustness for Stable Impulsive Equations via Quadratic Lyapunov Functions

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

For a linear impulsive differential equation, we give a complete characterization of the existence of a nonuniform exponential contraction in terms of quadratic Lyapunov functions and of the operators defining them. This corresponds to consider a nonuniform exponential stability of the dynamics, which is typical for example in the context of ergodic theory. As an application, we use this characterization to establish in a very simple manner the robustness property of a nonuniform exponential contraction under sufficiently small linear perturbations. In addition, we obtain versions of the robustness property for perturbations of the jumping times and of a strong nonuniform exponential contraction. The latter corresponds to consider not only an upper bound for the dynamics but also a lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Barreira and Ya. Pesin, Nonuniform Hyperbolicity, Encyclopedia of Mathematics and Its Applications 115, Cambridge University Press, 2007.

  2. Barreira L., Valls C.: Robustness of nonuniform exponential dichotomies in Banach spaces. J. Differential Equations 244, 2407–2447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barreira L., Valls C.: Quadratic Lyapunov functions and nonuniform exponential dichotomies. J. Differential Equations 246, 1235–1263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira L., Valls C.: Robustness for impulsive equations. Nonlinear Anal. 72, 2542–2563 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Bhatia and G. Szegö, Stability Theory of Dynamical Systems, Grundlehren der mathematischen Wissenschaften 161, Springer, 1970.

  6. Chow S.-N., Leiva H.: Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differential Equations 120, 429–477 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppel W.: Dichotomies and reducibility. J. Differential Equations 3, 500–521 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ju. Dalec′kiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs 43, Amer. Math. Soc., 1974.

  9. W. Hahn, Stability of Motion, Grundlehren der mathematischen Wissenschaften 138, Springer, 1967.

  10. V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6, World Scientific, 1989.

  11. J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method, with Applications, Mathematics in Science and Engineering 4, Academic Press, 1961.

  12. A. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, 1992.

  13. Massera J., Schäffer J.: Linear differential equations and functional analysis. I. Ann. of Math. 67(2), 517–573 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics 21, Academic Press, 1966.

  15. Naulin R., Pinto M.: Admissible perturbations of exponential dichotomy roughness. Nonlinear Anal. 31, 559–571 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oseledets V.: A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–221 (1968)

    MATH  Google Scholar 

  17. Pesin Ya.: Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR-Izv. 10, 1261–1305 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pliss V., Sell G.: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dynam. Differential Equations 11, 471–513 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Popescu L.: Exponential dichotomy roughness on Banach spaces. J. Math. Anal. Appl. 314, 436–454 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Samoilenko and N. Perestyuk, Impulsive Differential Equations, Nonlinear Science Series A: Monographs and Treatises 14, World Scientific, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Additional information

Supported by FCT/Portugal through UID/MAT/04459/2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreira, L., Valls, C. Robustness for Stable Impulsive Equations via Quadratic Lyapunov Functions. Milan J. Math. 84, 63–89 (2016). https://doi.org/10.1007/s00032-016-0251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-016-0251-8

Mathematics Subject Classification

Keywords

Navigation