Skip to main content
Log in

Maximum Principle for H-Surfaces in the Unit Cone and Dirichlet’s Problem for their Equation in Central Projection

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the unit cone \({\mathcal{C} := \{(x, y, z)} \in {\mathbb R}^{3} : {x}^{2} + {y}^{2} < {z}^{2}, {z} > {0}\}\) we establish a geometric maximum principle for H-surfaces, where its mean curvature \({H = H(x, y, z)}\) is optimally bounded. Consequently, these surfaces cannot touch the conical boundary \({\partial \mathcal{C}}\) at interior points and have to approach \({\partial \mathcal{C}}\) transversally. By a nonlinear continuity method, we then solve the Dirichlet problem of the H-surface equation in central projection for Jordan-domains \({\Omega}\) which are strictly convex in the following sense: On its whole boundary \({\partial \mathcal{C}(\Omega)}\) their associate cone \({\mathcal{C}(\Omega) := \{(rx, ry, r) \in {\mathbb R}^{3} : (x, y) \in \Omega, r \in (0,+\infty)}\}\) admits rotated unit cones \({O \circ \mathcal{C}}\) as solids of support, where \({O \in {\mathbb R}^{3\times3}}\) represents a rotation in the Euclidean space. Thus we construct the unique H-surface with one-to-one central projection onto these domains \({\Omega}\) bounding a given Jordan-contour \({\Gamma \subset \mathcal{C} \backslash \{0\}}\) with one-toone central projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dierkes U.: Maximum principles and nonexistence results for minimal submanifolds. Manuscripta mathematica 69, 203–218 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dierkes, U.; Hildebrandt, S.; Sauvigny, F.: Minimal Surfaces. Grundlehren der mathematischen Wissenschaften 339, Springer-Verlag, Berlin 2010.

  3. Dierkes, U.; Hildebrandt, S.; Tromba, A.: Regularity of Minimal Surfaces. Grundlehren der mathematischen Wissenschaften 340, Springer-Verlag, Berlin 2010.

  4. Hildebrandt S.: Über einen neuen Existenzsatz für Flächen vorgeschriebener mittlerer Krümmung. Math. Zeitschrift 119, 267–272 (1971)

    Article  MATH  Google Scholar 

  5. Hildebrandt S.: Maximum principles for minimal surfaces and for surfaces of continuous mean curvature. Math. Zeitschrift 128, 253–269 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sauvigny, F.: Partial Differential Equations. Part 1: Foundations and Integral Representations; Part 2: Functional Analytic Methods; With Consideration of Lectures by E.Heinz. Springer Universitext, 1st edition: Berlin 2006, 2nd edition: London 2012.

  7. Sauvigny, F.: Flächen vorgeschriebener mittlerer Krümmung mit eineindeutiger Projektion auf eine Ebene. Dissertation an der Georg-August-Universität Göttingen 1981. Math. Zeitschrift 180 (1982), 41-67.

  8. Sauvigny, F.: Surfaces of prescribed mean curvature H(x, y, z) with one-to-one central projection onto a plane. Preprint M 01/ 2015 im Mathematischen Institut der Brandenburgischen Technischen Universität Cottbus – Senftenberg. To appear 2015/16 in the Pacific Journal of Mathematics.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Sauvigny.

Additional information

Dedicated in friendship to Professor Dr. Ulrich Dierkes for his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauvigny, F. Maximum Principle for H-Surfaces in the Unit Cone and Dirichlet’s Problem for their Equation in Central Projection. Milan J. Math. 84, 91–104 (2016). https://doi.org/10.1007/s00032-016-0250-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-016-0250-9

Mathematics Subject Classification

Keywords

Navigation