Skip to main content
Log in

Cohomology of Horizontal Forms

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

The complex of s-horizontal forms of a smooth foliation F on a manifold M is proved to be exact for every s = 1, . . . , n = codim F, and the cohomology groups of the complex of its global sections, are introduced. They are then compared with other cohomology groups associated to a foliation, previously introduced. An explicit formula for an s-horizontal primitive of an s-horizontal closed form, is given. The problem of representing a de Rham cohomology class by means of a horizontal closed form is analysed. Applications of these cohomology groups are included and several specific examples of explicit computation of such groups—even for non-commutative structure groups—are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky D.V., Peter W. Michor: Differential geometry of \({\mathfrak{g}}\)-manifolds. Differential Geom. Appl. 5(4), 371–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Álvarez López J.: On Riemannian foliations with minimal leaves. Ann. Inst. Fourier Grenoble 40((1), 163–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson I.M.: Aspects of the inverse problem to the calculus of variations. Arch. Math. (Brno) 24, 181–202 (1988)

    MathSciNet  MATH  Google Scholar 

  4. I. M. Anderson, Introduction to the variational bicomplex, Mathematical aspects of classical field theory (Seattle, WA, 1991), 51–73, Contemp. Math. 132, Amer. Math. Soc., Providence, RI, 1992.

  5. Anderson I.M., Duchamp Th.E.: Variational principles for second-order quasilinear scalar equations. J. Differential Equations 51, 1–47 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Barre, A. El Kacimi Alaoui, Foliations, Handbook of Differential Geometry, Volume II, 35-77, Elsevier/North-Holland, Amsterdam, 2006.

  7. Blumenthal R.A.: The base-like cohomology of a class of transversely homogeneous foliations. Bull. Sci. Math. (2) 104, 301–303 (1980)

    MathSciNet  MATH  Google Scholar 

  8. R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior Differential Systems, Springer-Verlag, New York, 1991.

  9. A. Candel, L. Conlon, Foliations I, Graduate Studies in Mathematics 23, Amer. Math. Soc., Providence, RI, 2000.

  10. Douglas J.: Solution of the inverse problem of the calculus of variations. Trans. Amer. Math. Soc. 50, 71–128 (1941)

    Article  MathSciNet  Google Scholar 

  11. D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.

  12. El Kacimi-Alaoui A.: Sur la cohomologie feuilletée. Compositio Math. 49(2), 195–215 (1983)

    MathSciNet  MATH  Google Scholar 

  13. El Kacimi-Alaoui A., Tihami A.: Cohomologie bigraduée de certains feuilletages. Bull. Soc. Math. Belg. Sér. B 38(2), 144–156 (1986)

    MathSciNet  MATH  Google Scholar 

  14. D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, translated from the Russian by A. B. Sosinskii, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.

  15. R. Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg, No. 13, Hermann, Paris 1958.

  16. Goldschmidt H., Sternberg S.: The Hamilton-Cartan formalism in the Calculus of Variations. Ann. Inst. Fourier, Grenoble 23, 203–267 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Greub, S. Halperin, R. Vanstone, Connections, curvature, and cohomology. Volume II: Lie groups, principal bundles, and characteristic classes, Pure and Applied Mathematics, Volume 47-II, Academic Press, New York-London, 1973.

  18. J. Grifone, J. Muñoz Masqué, L. M. Pozo Coronado, Variational first-order quasilinear equations, L. Kozma, P.T. Nagy, L. Tamásy, eds., Proc. of the Colloquium on Differential Geometry, “Steps in Differential Geometry”, July 25–30, 2000, Debrecen (Hungary), Institute of Mathematics and Informatics, University of Debrecen, Debrecen, 2001, pp. 131–138.

  19. J. Grifone, Z. Muzsnay, Variational principles for second-order differential equations, Application of the Spencer theory to characterize variational sprays, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

  20. A. Grothendieck, Technique de descente et théorèmes d’existence en géometrie algébrique. I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, Volume 5, Exposé No. 190, 299–327, Soc. Math. France, Paris, 1995.

  21. A. Grothendieck, J. A. Dieudonné, Eléments de Géométrie Algébrique I, Die Grundleheren der mathematischen Wissenschaften in Einzeldarstellungen, Band 166, Springer-Verlag, Berlin, 1971.

  22. Heitsch J.L.: A cohomology for foliated manifolds. Comment. Math. Helv. 50, 197–218 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Henneaux M.: On the inverse problem of the calculus of variations in field theory. J. Phys. A 17, 75–85 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Herz C.S.: Functions which are divergences. Amer. J. Math. 92, 641–656 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jacobowitz H.: The Poincaré lemma for dω = F(x, ω). J. Differential Geom. 13(3), 361–371 (1978)

    MathSciNet  MATH  Google Scholar 

  26. F. W. Kamber, Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Volume 493, Springer-Verlag, Berlin-New York, 1975.

  27. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry I, John Wiley & Sons, Inc. (Interscience Division), New York, Volume I, 1963.

  28. Kamo H., Sugano R.: Necessary and sufficient conditions for the existence of a Lagrangian. The case of quasilinear field equations. Ann. Physics 128, 298–313 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mangiarotti L., Modugno M.: New operators on jet spaces. Ann. Fac. Sci. Toulouse, Série 5 5(2), 171–198 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marsden J.E., Shkoller S.: Multisymplectic geometry, covariant Hamiltonians, and water waves. Math. Proc. Cambridge Philos. Soc. 125(3), 553–575 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Michor P.W.: Basic differential forms for actions of Lie groups. Proc. Amer. Math. Soc. 124(5), 1633–1642 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miranda E., Vũ Ngọc S.: A singular Poincaré lemma. Int. Math. Res. Not. 2005(1), 27–45 (2005)

    Article  MATH  Google Scholar 

  33. Molino P., Sergiescu V.: Deux remarques sur les flots riemanniens. Manuscripta Math. 51(1–3), 145–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Muñoz Masqué, L. M. Pozo Coronado, Global Characterization of Variational First-Order Quasi-Linear Equations, Rep. Math. Phys. 56 (2005), 23–38.

    Google Scholar 

  35. Muñoz Masqué J., Rosado María E.: Invariant variational problems on linear frame bundles. J. Phys. A: Math. Gen. 35, 2013–2036 (2002)

    Article  MATH  Google Scholar 

  36. Palais R.: A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc. 22, 123 (1957)

    MathSciNet  Google Scholar 

  37. Reinhart B.L.: Differential Geometry of Foliations. Springer-Verlag, Berlin (1983)

    Book  MATH  Google Scholar 

  38. Roger C., Cohomologie (p, q) des feuilletages et applications, Transversal structure of foliations (Toulouse, 1982), Astérisque no. 116 (1984), 195-213.

  39. K. S. Sarkaria, The de Rham cohomology of foliated manifolds, thesis, SUNY, Stony Brook, 1974.

  40. D. J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, UK, 1989.

  41. Schwarz G.W.: On the de Rham cohomology of the leaf space of a foliation. Topology 13, 185–187 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sergiescu V.: Cohomologie basique et dualité des feuilletages riemanniens. Ann. Inst. Fourier (Grenoble) 35, 137–158 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Sergiescu, Basic cohomology and tautness of Riemannian foliations, in: Riemannian Foliations, Appendix B (Birkhäuser, Boston, 1988), 235–248.

  44. S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Inc., Englewood Cliffs, NJ, 1965.

  45. Takens F.: A global version of the inverse problem of the calculus of variations. J. Differential Geom. 14, 543–562 (1979)

    MathSciNet  MATH  Google Scholar 

  46. B. R. Tennison, Sheaf Theory, London Mathematical Society Lecture Note Series, Volume 20, Cambridge University Press, UK, 1975.

  47. I. Vaisman, Cohomology and differential forms. Translation editor: Samuel I. Goldberg. Pure and Applied Mathematics, Volume 21, Marcel Dekker, Inc., New York, 1973.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Pozo Coronado.

Additional information

Supported by MICINN (Spain), under grant # MTM2008–01386.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz Masqué, J., Pozo Coronado, L.M. Cohomology of Horizontal Forms. Milan J. Math. 80, 169–202 (2012). https://doi.org/10.1007/s00032-012-0173-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-012-0173-z

Mathematics Subject Classification (2010)

Keywords

Navigation